High School

Complete the following task:

A windmill completes 3 rotations every minute. Write a sine model, [tex]y=a \sin (b t)+k[/tex], for the height (in feet) of the end of one blade as a function of time [tex]t[/tex] (in seconds). Assume the blade is pointing to the right when [tex]t=0[/tex] and that the windmill turns counterclockwise at a constant rate.

1. [tex]a[/tex] is the length of the blade: [tex]a=15[/tex]
2. The vertical shift, [tex]k[/tex], is [tex]k=40[/tex]

The period is [tex]\frac{60}{3} = 20[/tex] seconds.

Choose the equation of the model:

A. [tex]y=40 \sin \left(\frac{\pi}{10} t\right)+15[/tex]
B. [tex]y=10 \sin \left(\frac{\pi}{15} t\right)+40[/tex]
C. [tex]y=15 \sin \left(\frac{\pi}{10} t\right)+40[/tex]

Answer :

Let's break down the problem and determine the correct sine model for the height of the windmill blade:

1. Understand the Cycle:
- The windmill completes 3 full rotations every minute. Since there are 60 seconds in a minute, each single rotation takes [tex]\( \frac{60}{3} = 20 \)[/tex] seconds.

2. Identify the Parameters:
- We are using the sine function of the form [tex]\( y = a \sin(b t) + k \)[/tex], where:
- [tex]\( a \)[/tex] is the amplitude, which corresponds to the length of the blade. In this case, [tex]\( a = 15 \)[/tex] feet.
- [tex]\( k \)[/tex] is the vertical shift, which is the height of the center of rotation above the ground. Here, [tex]\( k = 40 \)[/tex] feet.
- [tex]\( b \)[/tex] determines how quickly the sine function completes a cycle, given by the formula for the period [tex]\( T = \frac{2\pi}{b} \)[/tex].

3. Calculate [tex]\( b \)[/tex]:
- Since the windmill makes a complete rotation every 20 seconds, the period [tex]\( T = 20 \)[/tex].
- Using the period formula [tex]\( T = \frac{2\pi}{b} \)[/tex], we have:
[tex]\[
20 = \frac{2\pi}{b}
\][/tex]
- Solving for [tex]\( b \)[/tex], we get:
[tex]\[
b = \frac{2\pi}{20} = \frac{\pi}{10}
\][/tex]

4. Choose the Correct Sine Model:
- Now substituting the values we know into the sine model equation:
- [tex]\( a = 15 \)[/tex],
- [tex]\( b = \frac{\pi}{10} \)[/tex],
- [tex]\( k = 40 \)[/tex].

- The equation becomes:
[tex]\[
y = 15 \sin\left(\frac{\pi}{10} t\right) + 40
\][/tex]

Therefore, the correct sine model for the height of the end of the windmill blade as a function of time [tex]\( t \)[/tex] in seconds is:
[tex]\[ y = 15 \sin\left(\frac{\pi}{10} t\right) + 40 \][/tex]