Answer :
To combine the like terms in the polynomials [tex]\((4 + 2x^3) + (5x^3 + 2)\)[/tex], follow these steps:
1. Identify the like terms:
- The constant terms are [tex]\(4\)[/tex] and [tex]\(2\)[/tex].
- The [tex]\(x^3\)[/tex] terms are [tex]\(2x^3\)[/tex] and [tex]\(5x^3\)[/tex].
2. Combine the constant terms:
- Add [tex]\(4\)[/tex] and [tex]\(2\)[/tex] together:
[tex]\[
4 + 2 = 6
\][/tex]
3. Combine the [tex]\(x^3\)[/tex] terms:
- Add the coefficients of the [tex]\(x^3\)[/tex] terms:
[tex]\[
2x^3 + 5x^3 = 7x^3
\][/tex]
4. Write the combined polynomial:
- The simplified expression, after combining all the like terms, is:
[tex]\[
7x^3 + 6
\][/tex]
So, the correct choice from the given options is [tex]\(7x^3 + 6\)[/tex].
1. Identify the like terms:
- The constant terms are [tex]\(4\)[/tex] and [tex]\(2\)[/tex].
- The [tex]\(x^3\)[/tex] terms are [tex]\(2x^3\)[/tex] and [tex]\(5x^3\)[/tex].
2. Combine the constant terms:
- Add [tex]\(4\)[/tex] and [tex]\(2\)[/tex] together:
[tex]\[
4 + 2 = 6
\][/tex]
3. Combine the [tex]\(x^3\)[/tex] terms:
- Add the coefficients of the [tex]\(x^3\)[/tex] terms:
[tex]\[
2x^3 + 5x^3 = 7x^3
\][/tex]
4. Write the combined polynomial:
- The simplified expression, after combining all the like terms, is:
[tex]\[
7x^3 + 6
\][/tex]
So, the correct choice from the given options is [tex]\(7x^3 + 6\)[/tex].