Answer :
Answer:
- 6 bunches of bananas
- 7 pounds of apples
Step-by-step explanation:
We have to assume that a "piece of fruit" is either a bunch of bananas or a pound of apples. Without that assumption, there is insufficient information to work the problem.
Let B represent the number of bunches of bananas. Then 13-B is the number of pounds of apples. The total cost is ...
6B +8(13 -B) = 92
-2B + 104 = 92 . . . . . eliminate parentheses
B = -12/-2 = 6 . . . . . . subtract 104, then divide by the coefficient of B
13-B = 7 . . . . . . . . . . . the number of pounds of apples
The customer bought 6 bunches of bananas and 7 pounds of apples.
_____
Comment on the solution
You will note that finding the value of the variable involved arithmetic with negative numbers. If you want the numbers to stay positive, then you can choose the variable to represent the most expensive of the items: the number of pounds of apples.
Final answer:
The question is about determining the number of bunches of bananas and pounds of apples a customer bought based on the total pieces of fruit and the amount charged. We can set up a system of linear equations to find the solution.
Explanation:
The student is asking a question related to linear equations which is a part of algebra, a branch of mathematics. The problem involves finding the number of bunches of bananas and pounds of apples based on the given prices and total amount charged.
Steps to Solve the Question:
Let's assume the number of bunches of bananas is b and the number of pounds of apples is a.
The price for a bunch of bananas is $6, so the total price for bananas is 6b.
The price for a pound of apples is $8, so the total price for apples is 8a.
The total pieces of fruit bought are 13, which implies a + b = 13.
The total amount charged is $92, which implies 6b + 8a = 92.
We can solve the system of equations to find the values of a and b.
Example:
If a = 7 pounds of apples and b = 6 bunches of bananas,
The cost of apples would be 7 x $8 = $56.
The cost of bananas would be 6 x $6 = $36.
Add the cost of apples and bananas to get a total of $92, which matches the customer's charge.
Check that the number of fruit pieces adds up to 13: 7 (apples) + 6 (bananas) = 13.