High School

Clothes in a dryer travel in a loop at [tex]$35.8 \, \text{m/s}$[/tex] and have a centripetal acceleration of [tex]$3,740 \, \text{m/s}^2$[/tex].

What is the radius of the loop?

[tex]r = [?] \, \text{m}[/tex]

Answer :

To find the radius of the loop that the clothes in a dryer travel in, we use the formula for centripetal acceleration:

[tex]\[ a_c = \frac{v^2}{r} \][/tex]

where:
- [tex]\( a_c \)[/tex] is the centripetal acceleration,
- [tex]\( v \)[/tex] is the speed,
- [tex]\( r \)[/tex] is the radius of the loop.

We need to find [tex]\( r \)[/tex], so let's rearrange the formula:

[tex]\[ r = \frac{v^2}{a_c} \][/tex]

We are given:
- The speed [tex]\( v = 35.8 \, \text{m/s} \)[/tex],
- The centripetal acceleration [tex]\( a_c = 3740 \, \text{m/s}^2 \)[/tex].

Now, substitute the given values into the rearranged formula:

[tex]\[ r = \frac{(35.8)^2}{3740} \][/tex]

Calculate the square of the speed:

[tex]\[ (35.8)^2 = 1281.64 \][/tex]

Now, divide by the centripetal acceleration:

[tex]\[ r = \frac{1281.64}{3740} \][/tex]

[tex]\[ r \approx 0.3427 \, \text{m} \][/tex]

So, the radius of the loop is approximately [tex]\( 0.3427 \, \text{meters} \)[/tex].