College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Choose the correct simplification of the expression [tex](7x-3)(4x^2-3x-6)[/tex].

A. [tex]28x^3-33x^2-33x-18[/tex]

B. [tex]28x^3+33x^2-33x+18[/tex]

C. [tex]28x^3-51x^2-33x+18[/tex]

D. [tex]28x^3-33x^2-33x+18[/tex]

Answer :

To simplify the expression [tex]\((7x - 3)(4x^2 - 3x - 6)\)[/tex], we will use the distributive property, also known as the FOIL method for multiplying polynomials. Here's the procedure, broken down step by step:

1. Distribute [tex]\(7x\)[/tex] across the trinomial [tex]\((4x^2 - 3x - 6)\)[/tex]:

- Multiply [tex]\(7x\)[/tex] by [tex]\(4x^2\)[/tex]:
[tex]\[
7x \cdot 4x^2 = 28x^3
\][/tex]

- Multiply [tex]\(7x\)[/tex] by [tex]\(-3x\)[/tex]:
[tex]\[
7x \cdot (-3x) = -21x^2
\][/tex]

- Multiply [tex]\(7x\)[/tex] by [tex]\(-6\)[/tex]:
[tex]\[
7x \cdot (-6) = -42x
\][/tex]

2. Distribute [tex]\(-3\)[/tex] across the trinomial [tex]\((4x^2 - 3x - 6)\)[/tex]:

- Multiply [tex]\(-3\)[/tex] by [tex]\(4x^2\)[/tex]:
[tex]\[
-3 \cdot 4x^2 = -12x^2
\][/tex]

- Multiply [tex]\(-3\)[/tex] by [tex]\(-3x\)[/tex]:
[tex]\[
-3 \cdot (-3x) = 9x
\][/tex]

- Multiply [tex]\(-3\)[/tex] by [tex]\(-6\)[/tex]:
[tex]\[
-3 \cdot (-6) = 18
\][/tex]

3. Combine all the terms:

- Combine all the terms we obtained from the distribution:
[tex]\[
28x^3 - 21x^2 - 42x - 12x^2 + 9x + 18
\][/tex]

4. Simplify by combining like terms:

- Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[
-21x^2 - 12x^2 = -33x^2
\][/tex]

- Combine the [tex]\(x\)[/tex] terms:
[tex]\[
-42x + 9x = -33x
\][/tex]

5. Write the simplified expression:

- Final expression after combining like terms:
[tex]\[
28x^3 - 33x^2 - 33x + 18
\][/tex]

The simplified form of the expression [tex]\((7x - 3)(4x^2 - 3x - 6)\)[/tex] is [tex]\(\boxed{28x^3 - 33x^2 - 33x + 18}\)[/tex].