College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Choose the correct simplification of the expression [tex]-4x^2(6x - 5x^2 - 5)[/tex].

A. [tex]20x^4 + 24x^3 + 20x^2[/tex]

B. [tex]-9x^4 + 2x^3 - 9x^2[/tex]

C. [tex]20x^4 - 24x^3 + 20x^2[/tex]

D. [tex]-20x^4 + 24x^3 - 20x^2[/tex]

Answer :

To simplify the expression [tex]\(-4 x^2\left(6 x - 5 x^2 - 5\right)\)[/tex], follow these steps:

1. Distribute the [tex]\(-4x^2\)[/tex] into each term inside the parentheses:

- Multiply [tex]\(-4x^2\)[/tex] by [tex]\(6x\)[/tex]:
[tex]\[
-4x^2 \times 6x = -24x^3
\][/tex]

- Multiply [tex]\(-4x^2\)[/tex] by [tex]\(-5x^2\)[/tex]:
[tex]\[
-4x^2 \times -5x^2 = 20x^4
\][/tex]

- Multiply [tex]\(-4x^2\)[/tex] by [tex]\(-5\)[/tex]:
[tex]\[
-4x^2 \times -5 = 20x^2
\][/tex]

2. Combine all the terms:

The expression can now be written as:
[tex]\[
20x^4 - 24x^3 + 20x^2
\][/tex]

Thus, the simplified form of the expression is [tex]\(20x^4 - 24x^3 + 20x^2\)[/tex].

This matches the choice:
[tex]\[ \boxed{20 x^4 - 24 x^3 + 20 x^2} \][/tex]