College

Choose the correct simplification of the expression [tex]-4x^2(6x - 5x^2 - 5)[/tex].

A. [tex]20x^4 + 24x^3 + 20x^2[/tex]
B. [tex]-9x^4 + 2x^3 - 9x^2[/tex]
C. [tex]20x^4 - 24x^3 + 20x^2[/tex]
D. [tex]-20x^4 + 24x^3 - 20x^2[/tex]

Answer :

Sure, let's simplify the expression step by step:

The expression given is [tex]\(-4 x^2(6 x - 5 x^2 - 5)\)[/tex].

Step 1: Distribute [tex]\(-4 x^2\)[/tex] into the expression inside the parentheses.

1. Multiply [tex]\(-4 x^2\)[/tex] with [tex]\(6 x\)[/tex]:
[tex]\[
-4 x^2 \cdot 6 x = -24 x^3
\][/tex]

2. Multiply [tex]\(-4 x^2\)[/tex] with [tex]\(-5 x^2\)[/tex]:
[tex]\[
-4 x^2 \cdot (-5 x^2) = 20 x^4
\][/tex]

3. Multiply [tex]\(-4 x^2\)[/tex] with [tex]\(-5\)[/tex]:
[tex]\[
-4 x^2 \cdot (-5) = 20 x^2
\][/tex]

Step 2: Combine all the terms.

Now, put all these products together:
[tex]\[
20 x^4 - 24 x^3 + 20 x^2
\][/tex]

Step 3: Match with the given options.

The correctly simplified expression matches the third option:
[tex]\[
20 x^4 - 24 x^3 + 20 x^2
\][/tex]

So, the correct answer is:
[tex]\[
20 x^4 - 24 x^3 + 20 x^2
\][/tex]