High School

Choose the correct simplification of [tex]\left(2x^3 + x^2 - 4x\right) - \left(9x^3 - 3x^2\right)[/tex]:

A. [tex]11x^3 - 2x^2 - 4x[/tex]

B. [tex]-7x^3 + 4x^2 - 4x[/tex]

C. [tex]-2x^3 - 2x^2 - 4x[/tex]

D. [tex]-7x^3 - 4x^2 - 4x[/tex]

Answer :

To simplify the expression [tex]\((2x^3 + x^2 - 4x) - (9x^3 - 3x^2)\)[/tex], follow these steps:

1. Distribute the Negative Sign:
The expression is given as a subtraction of two groups of terms. First, distribute the negative sign across the second set of parentheses:

[tex]\[
(2x^3 + x^2 - 4x) - (9x^3 - 3x^2) = 2x^3 + x^2 - 4x - 9x^3 + 3x^2
\][/tex]

2. Combine Like Terms:
Now, group and combine the like terms:

- Cubic terms: [tex]\(2x^3 - 9x^3 = -7x^3\)[/tex]
- Quadratic terms: [tex]\(x^2 + 3x^2 = 4x^2\)[/tex]
- Linear terms: There is only one linear term, [tex]\(-4x\)[/tex].

3. Result:
After combining the like terms, the simplified expression is:

[tex]\[
-7x^3 + 4x^2 - 4x
\][/tex]

Thus, the correct choice is:
[tex]\[
\text{b) } -7x^3 + 4x^2 - 4x
\][/tex]