College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Choose the correct simplification of [tex]9x^2(4x + 2x^2 - 1)[/tex].

A. [tex]18x^4 + 36x^3 - 9x^2[/tex]

B. [tex]18x^4 - 35x^3 + 9x^2[/tex]

C. [tex]36x^4 + 18x^3 - 9x^2[/tex]

D. [tex]36x^4 - 13x^3 + 9x^2[/tex]

Answer :

To simplify the expression [tex]\( 9x^2(4x + 2x^2 - 1) \)[/tex], we need to distribute [tex]\( 9x^2 \)[/tex] to each term inside the parentheses. Here’s how this can be done step-by-step:

1. Distribute [tex]\( 9x^2 \)[/tex]:

- Multiply [tex]\( 9x^2 \)[/tex] with [tex]\( 4x \)[/tex]:
[tex]\[
9x^2 \times 4x = 36x^3
\][/tex]

- Multiply [tex]\( 9x^2 \)[/tex] with [tex]\( 2x^2 \)[/tex]:
[tex]\[
9x^2 \times 2x^2 = 18x^4
\][/tex]

- Multiply [tex]\( 9x^2 \)[/tex] with [tex]\(-1\)[/tex]:
[tex]\[
9x^2 \times -1 = -9x^2
\][/tex]

2. Combine these results:

Now, combine all the results from the distribution:
[tex]\[
18x^4 + 36x^3 - 9x^2
\][/tex]

Thus, the simplified form of the expression [tex]\( 9x^2(4x + 2x^2 - 1) \)[/tex] is:

[tex]\[ 18x^4 + 36x^3 - 9x^2 \][/tex]

Comparing this with the provided choices, the correct option is:

a) [tex]\( 18x^4 + 36x^3 - 9x^2 \)[/tex]