Answer :
We start with the expression
[tex]$$7x^2\left(6x + 3x^2 - 4\right).$$[/tex]
Step 1: Distribute [tex]$7x^2$[/tex] to each term inside the parentheses.
Multiply [tex]$7x^2$[/tex] by each term:
- Multiply [tex]$7x^2$[/tex] by [tex]$6x$[/tex]:
[tex]$$7x^2 \cdot 6x = 42x^3.$$[/tex]
- Multiply [tex]$7x^2$[/tex] by [tex]$3x^2$[/tex]:
[tex]$$7x^2 \cdot 3x^2 = 21x^4.$$[/tex]
- Multiply [tex]$7x^2$[/tex] by [tex]$-4$[/tex]:
[tex]$$7x^2 \cdot (-4) = -28x^2.$$[/tex]
Step 2: Combine the results.
After distributing, we have:
[tex]$$21x^4 + 42x^3 - 28x^2.$$[/tex]
Thus, the simplified expression is
[tex]$$21x^4 + 42x^3 - 28x^2.$$[/tex]
This corresponds to the third option among the given choices.
[tex]$$7x^2\left(6x + 3x^2 - 4\right).$$[/tex]
Step 1: Distribute [tex]$7x^2$[/tex] to each term inside the parentheses.
Multiply [tex]$7x^2$[/tex] by each term:
- Multiply [tex]$7x^2$[/tex] by [tex]$6x$[/tex]:
[tex]$$7x^2 \cdot 6x = 42x^3.$$[/tex]
- Multiply [tex]$7x^2$[/tex] by [tex]$3x^2$[/tex]:
[tex]$$7x^2 \cdot 3x^2 = 21x^4.$$[/tex]
- Multiply [tex]$7x^2$[/tex] by [tex]$-4$[/tex]:
[tex]$$7x^2 \cdot (-4) = -28x^2.$$[/tex]
Step 2: Combine the results.
After distributing, we have:
[tex]$$21x^4 + 42x^3 - 28x^2.$$[/tex]
Thus, the simplified expression is
[tex]$$21x^4 + 42x^3 - 28x^2.$$[/tex]
This corresponds to the third option among the given choices.