College

Choose the correct simplification of [tex](6x - 5)(2x^2 - 3x - 6)[/tex].

A. [tex]12x^3 + 28x^2 + 21x + 30[/tex]

B. [tex]12x^3 - 28x^2 - 21x + 30[/tex]

C. [tex]12x^3 + 28x^2 - 21x + 30[/tex]

D. [tex]12x^3 - 28x^2 - 21x - 30[/tex]

Answer :

To simplify the expression [tex]\((6x - 5)(2x^2 - 3x - 6)\)[/tex], follow these steps:

1. Distribute each term in the first polynomial across the second polynomial:

We'll use the distributive property to expand the expression:

[tex]\[
(6x - 5)(2x^2 - 3x - 6) = 6x \cdot (2x^2 - 3x - 6) - 5 \cdot (2x^2 - 3x - 6)
\][/tex]

2. Multiply each part:

- For [tex]\(6x \cdot (2x^2 - 3x - 6)\)[/tex]:
- [tex]\(6x \cdot 2x^2 = 12x^3\)[/tex]
- [tex]\(6x \cdot -3x = -18x^2\)[/tex]
- [tex]\(6x \cdot -6 = -36x\)[/tex]

The result of this part is: [tex]\(12x^3 - 18x^2 - 36x\)[/tex]

- For [tex]\(-5 \cdot (2x^2 - 3x - 6)\)[/tex]:
- [tex]\(-5 \cdot 2x^2 = -10x^2\)[/tex]
- [tex]\(-5 \cdot -3x = 15x\)[/tex]
- [tex]\(-5 \cdot -6 = 30\)[/tex]

The result of this part is: [tex]\(-10x^2 + 15x + 30\)[/tex]

3. Combine the results:

Add the simplified parts together:

[tex]\[
12x^3 - 18x^2 - 36x - 10x^2 + 15x + 30
\][/tex]

4. Combine like terms:

- The [tex]\(x^3\)[/tex] term: [tex]\(12x^3\)[/tex]
- The [tex]\(x^2\)[/tex] terms: [tex]\(-18x^2 - 10x^2 = -28x^2\)[/tex]
- The [tex]\(x\)[/tex] terms: [tex]\(-36x + 15x = -21x\)[/tex]
- The constant term: [tex]\(+30\)[/tex]

This gives us the simplified expression:

[tex]\[
12x^3 - 28x^2 - 21x + 30
\][/tex]

Therefore, the correct simplification of [tex]\((6x - 5)(2x^2 - 3x - 6)\)[/tex] is [tex]\(12x^3 - 28x^2 - 21x + 30\)[/tex].