College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Choose the correct simplification of [tex]$(4x - 3)(3x^2 - 4x - 3)$[/tex].

A. [tex]12x^3 - 25x^2 - 9[/tex]
B. [tex]12x^3 - 25x^2 + 9[/tex]
C. [tex]12x^3 + 25x^2 + 9[/tex]
D. [tex]12x^3 + 25x^2 - 9[/tex]

Answer :

We start with the expression:
[tex]$$
(4x - 3)(3x^2 - 4x - 3).
$$[/tex]

Step 1. Distribute each term of the first factor into the second factor.

Multiply [tex]$4x$[/tex] by each term in the second factor:
[tex]$$
4x \cdot 3x^2 = 12x^3,
$$[/tex]
[tex]$$
4x \cdot (-4x) = -16x^2,
$$[/tex]
[tex]$$
4x \cdot (-3) = -12x.
$$[/tex]

Next, multiply [tex]$-3$[/tex] by each term in the second factor:
[tex]$$
-3 \cdot 3x^2 = -9x^2,
$$[/tex]
[tex]$$
-3 \cdot (-4x) = +12x,
$$[/tex]
[tex]$$
-3 \cdot (-3) = +9.
$$[/tex]

Step 2. Combine all the terms.

Gather the terms calculated:
[tex]$$
12x^3 \quad (-16x^2 - 9x^2) \quad (-12x + 12x) \quad +9.
$$[/tex]

Combine like terms:
- For [tex]$x^3$[/tex]:
[tex]$$
12x^3.
$$[/tex]
- For [tex]$x^2$[/tex]:
[tex]$$
-16x^2 - 9x^2 = -25x^2.
$$[/tex]
- For [tex]$x$[/tex]:
[tex]$$
-12x + 12x = 0.
$$[/tex]
- The constant term is:
[tex]$$
+9.
$$[/tex]

Thus, the expression simplifies to:
[tex]$$
12x^3 - 25x^2 + 9.
$$[/tex]

Step 3. Identify the correct answer.

The simplified expression is:
[tex]$$
12x^3 - 25x^2 + 9.
$$[/tex]

This corresponds to the option:
[tex]$$
\textbf{12 x}^3 - 25 \textbf{ x}^2 + 9.
$$[/tex]