College

Choose the correct simplification of [tex]$(4x - 3)(3x^2 - 4x - 3)$[/tex].

A. [tex]12x^3 + 25x^2 + 9[/tex]
B. [tex]12x^3 - 25x^2 - 9[/tex]
C. [tex]12x^3 + 25x^2 - 9[/tex]
D. [tex]12x^3 - 25x^2 + 9[/tex]

Answer :

To simplify the expression [tex]\((4x - 3)(3x^2 - 4x - 3)\)[/tex], let's go through the multiplication step by step.

1. Multiply each term in the first binomial by each term in the second binomial.

Distribute [tex]\(4x\)[/tex] to each term in the second binomial:
[tex]\[
4x \cdot 3x^2 = 12x^3
\][/tex]
[tex]\[
4x \cdot (-4x) = -16x^2
\][/tex]
[tex]\[
4x \cdot (-3) = -12x
\][/tex]

Distribute [tex]\(-3\)[/tex] to each term in the second binomial:
[tex]\[
(-3) \cdot 3x^2 = -9x^2
\][/tex]
[tex]\[
(-3) \cdot (-4x) = 12x
\][/tex]
[tex]\[
(-3) \cdot (-3) = 9
\][/tex]

2. Combine all these products:
[tex]\[
12x^3 - 16x^2 - 12x - 9x^2 + 12x + 9
\][/tex]

3. Simplify by combining like terms:

Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[
-16x^2 - 9x^2 = -25x^2
\][/tex]

Combine the [tex]\(x\)[/tex] terms:
[tex]\[
-12x + 12x = 0
\][/tex]

So, the expression simplifies to:
[tex]\[
12x^3 - 25x^2 + 9
\][/tex]

Therefore, the correct simplified expression is:
[tex]\[
12x^3 - 25x^2 + 9
\][/tex]

This corresponds to option d).