High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Calculate the [tex] n^{\text{th}} [/tex] term of the sequence.

Select all correct options:

A. [tex] a_n = 20000 + 20000(n-1) [/tex]

B.
[tex]
\begin{array}{c}
a_1 = 20000 \\
a_n = a_{n-1} + 20000
\end{array}
[/tex]

C.
[tex]
\begin{array}{c}
a_n = 20000 + 0(n-1) \\
a_n = 20000n + 20000 \\
a_n = 20000n
\end{array}
[/tex]

Answer :

Sure! Let's determine which formulas correctly represent the [tex]\(n^{\text{th}}\)[/tex] term of the sequence based on the given options.

Given the sequence definitions and initial conditions, we want to see which ones successfully calculate the same [tex]\(n^{\text{th}}\)[/tex] term.

#### First Option
[tex]\[a_n = 20000 + 20000(n-1)\][/tex]

To see if this works, let's check for [tex]\(n = 3\)[/tex]:
[tex]\[a_3 = 20000 + 20000(3-1) = 20000 + 20000 \times 2 = 20000 + 40000 = 60000\][/tex]

This option is correct since it gives us the same result as calculated.

#### Second Option
[tex]\[
\begin{array}{c}
a_1 = 20000 \\
a_n = a_{n-1} + 20000
\end{array}
\][/tex]

For [tex]\(n = 3\)[/tex]:
- First term: [tex]\(a_1 = 20000\)[/tex]
- Second term: [tex]\(a_2 = a_1 + 20000 = 20000 + 20000 = 40000\)[/tex]
- Third term: [tex]\(a_3 = a_2 + 20000 = 40000 + 20000 = 60000\)[/tex]

This option is also correct because it results in [tex]\( 60000 \)[/tex].

#### Third Option
[tex]\[
\begin{array}{c}
a_n = 20000 + 0(n-1) \\
a_n = 20000 n + 20000 \\
a_n = 20000n
\end{array}
\][/tex]

Let's break down these individually:

- [tex]\(a_n = 20000 + 0(n-1)\)[/tex]:

For any [tex]\(n\)[/tex], it simplifies to:
[tex]\[a_n = 20000\][/tex]

This does not match our sequence for higher values of [tex]\(n\)[/tex], for example, [tex]\(n = 3\)[/tex] results in [tex]\(a_3 = 20000\)[/tex], which is not correct for our sequence.

- [tex]\(a_n = 20000n + 20000\)[/tex]:

For [tex]\(n = 3\)[/tex]:
[tex]\[a_3 = 20000 \times 3 + 20000 = 60000 + 20000 = 80000\][/tex]

This result is clearly not correct.

- [tex]\(a_n = 20000n\)[/tex]:

For [tex]\(n = 3\)[/tex]:
[tex]\[a_3 = 20000 \times 3 = 60000\][/tex]

This option is correct because it gives us the same result.

### Conclusion
The correct formulas that represent the [tex]\(n^{\mathrm{th}}\)[/tex] term of the sequence are:
1. [tex]\(a_n = 20000 + 20000(n-1)\)[/tex]
2.
[tex]\[
\begin{array}{c}
a_1 = 20000 \\
a_n = a_{n-1} + 20000
\end{array}
\][/tex]
3. [tex]\(a_n = 20000n\)[/tex]

These options correctly produce the same [tex]\(n^{\text{th}}\)[/tex] term value.