High School

Calculate the remaining amount of 100.0 g of cobalt-60 after 1600 years. The half-life of cobalt-60 is 5272 years.

a) 67.25 g
b) 81.10 g
c) 99.9 g
d) 55.21 g

Use the formula: [tex]N = N_0\left(\frac{1}{2}\right)^{\frac{t}{T}}[/tex]

Where:
- [tex]N_0[/tex] is the initial amount (100.0 g)
- [tex]t[/tex] is the time elapsed (1600 years)
- [tex]T[/tex] is the half-life (5272 years)

Answer :

We start with the formula for radioactive decay:

[tex]$$
m(t) = m_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}},
$$[/tex]

where:
- [tex]$m(t)$[/tex] is the remaining mass after time [tex]$t$[/tex],
- [tex]$m_0$[/tex] is the initial mass,
- [tex]$t$[/tex] is the elapsed time, and
- [tex]$T_{1/2}$[/tex] is the half-life of the substance.

Given:
- [tex]$m_0 = 100.0$[/tex] g,
- [tex]$t = 1600$[/tex] years, and
- [tex]$T_{1/2} = 5272$[/tex] years,

we substitute these values into the decay formula:

[tex]$$
m(1600) = 100.0 \left(\frac{1}{2}\right)^{\frac{1600}{5272}}.
$$[/tex]

1. First, calculate the exponent:

[tex]$$
\frac{1600}{5272} \approx 0.30349.
$$[/tex]

2. Next, evaluate the decay factor:

[tex]$$
\left(\frac{1}{2}\right)^{0.30349} \approx 0.81029.
$$[/tex]

3. Finally, compute the remaining mass:

[tex]$$
m(1600) = 100.0 \times 0.81029 \approx 81.03 \text{ g}.
$$[/tex]

Rounding to a reasonable number of significant figures, the remaining amount of cobalt-60 after 1600 years is approximately [tex]$81.1$[/tex] g.

Thus, the correct answer is:

[tex]$$\boxed{81.10 \text{ g}}.$$[/tex]