Answer :
Broad-sense heritability ([tex]$H^2$[/tex]) is defined as the ratio of the genotypic variance ([tex]$\sigma_G^2$[/tex]) to the total phenotypic variance ([tex]$\sigma_P^2$[/tex]):
[tex]$$
H^2 = \frac{\sigma_G^2}{\sigma_P^2}
$$[/tex]
Given:
- Genotypic variance, [tex]$\sigma_G^2 = 25$[/tex]
- Phenotypic variance, [tex]$\sigma_P^2 = 40$[/tex]
Substitute these values into the formula:
[tex]$$
H^2 = \frac{25}{40}
$$[/tex]
Simplify the fraction:
[tex]$$
H^2 = 0.625
$$[/tex]
Thus, the broad-sense heritability is [tex]$0.625$[/tex].
[tex]$$
H^2 = \frac{\sigma_G^2}{\sigma_P^2}
$$[/tex]
Given:
- Genotypic variance, [tex]$\sigma_G^2 = 25$[/tex]
- Phenotypic variance, [tex]$\sigma_P^2 = 40$[/tex]
Substitute these values into the formula:
[tex]$$
H^2 = \frac{25}{40}
$$[/tex]
Simplify the fraction:
[tex]$$
H^2 = 0.625
$$[/tex]
Thus, the broad-sense heritability is [tex]$0.625$[/tex].