College

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
[tex]$A$[/tex] & [tex]$B$[/tex] & [tex]$C$[/tex] & [tex]$E$[/tex] & [tex]$G$[/tex] & [tex]$K$[/tex] & [tex]$L$[/tex] & [tex]$M$[/tex] & [tex]$R$[/tex] & [tex]$S$[/tex] & [tex]$T$[/tex] & [tex]$U$[/tex] \\
\hline
[tex]$\frac{31}{40}$[/tex] & [tex]$3 \frac{38}{45}$[/tex] & 5 & [tex]$6 \frac{1}{6}$[/tex] & [tex]$\frac{19}{21}$[/tex] & [tex]$\frac{39}{40}$[/tex] & [tex]$4 \frac{7}{8}$[/tex] & [tex]$\frac{33}{40}$[/tex] & [tex]$3 \frac{17}{30}$[/tex] & [tex]$\frac{20}{21}$[/tex] & [tex]$8 \frac{5}{12}$[/tex] & [tex]$1 \frac{1}{6}$[/tex] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline
Add & Sum (Show your solution) & Decoded Letter \\
\hline
1. [tex]$\frac{2}{5}+\frac{3}{8}$[/tex] & & \\
\hline
2. [tex]$\frac{1}{3}+\frac{4}{7}$[/tex] & & \\
\hline
3. [tex]$\frac{3}{5}+\frac{7}{40}$[/tex] & & \\
\hline
4. [tex]$1 \frac{1}{2}+2 \frac{1}{15}$[/tex] & & \\
\hline
\end{tabular}

Answer :

Sure, let's work through each addition problem step by step:

1. Add [tex]\( \frac{2}{5} + \frac{3}{8} \)[/tex]:

- First, find a common denominator. The least common multiple of 5 and 8 is 40.
- Convert each fraction:
- [tex]\( \frac{2}{5} = \frac{2 \times 8}{5 \times 8} = \frac{16}{40} \)[/tex]
- [tex]\( \frac{3}{8} = \frac{3 \times 5}{8 \times 5} = \frac{15}{40} \)[/tex]
- Add the two fractions:
- [tex]\( \frac{16}{40} + \frac{15}{40} = \frac{31}{40} \)[/tex]

2. Add [tex]\( \frac{1}{3} + \frac{4}{7} \)[/tex]:

- Common denominator is 21.
- Convert each fraction:
- [tex]\( \frac{1}{3} = \frac{1 \times 7}{3 \times 7} = \frac{7}{21} \)[/tex]
- [tex]\( \frac{4}{7} = \frac{4 \times 3}{7 \times 3} = \frac{12}{21} \)[/tex]
- Add the fractions:
- [tex]\( \frac{7}{21} + \frac{12}{21} = \frac{19}{21} \)[/tex]

3. Add [tex]\( \frac{3}{5} + \frac{7}{40} \)[/tex]:

- Common denominator is 40.
- Convert each fraction:
- [tex]\( \frac{3}{5} = \frac{3 \times 8}{5 \times 8} = \frac{24}{40} \)[/tex]
- [tex]\( \frac{7}{40} = \frac{7}{40} \)[/tex] (already common denominator)
- Add the fractions:
- [tex]\( \frac{24}{40} + \frac{7}{40} = \frac{31}{40} \)[/tex]

4. Add the mixed numbers [tex]\( 1 \frac{1}{2} + 2 \frac{1}{15} \)[/tex]:

- Convert the mixed numbers to improper fractions:
- [tex]\( 1 \frac{1}{2} = \frac{3}{2} \)[/tex]
- [tex]\( 2 \frac{1}{15} = \frac{31}{15} \)[/tex]
- Find a common denominator, which is 30.
- Convert:
- [tex]\( \frac{3}{2} = \frac{3 \times 15}{2 \times 15} = \frac{45}{30} \)[/tex]
- [tex]\( \frac{31}{15} = \frac{31 \times 2}{15 \times 2} = \frac{62}{30} \)[/tex]
- Add the fractions:
- [tex]\( \frac{45}{30} + \frac{62}{30} = \frac{107}{30} \)[/tex]

Now, you match these fractions with their respective letters in the table:

- For [tex]\( \frac{31}{40} \)[/tex], the matching letter is [tex]\( A \)[/tex] or [tex]\( M \)[/tex].
- For [tex]\( \frac{19}{21} \)[/tex], the corresponding letter is [tex]\( G \)[/tex].
- For [tex]\( \frac{107}{30} \)[/tex], it doesn't directly correspond to a single straightforward letter based on the given fractions in the dictionary but appears as a result of calculation.

Each calculation aligns with the results provided, ensuring accuracy in your understanding and verification.