Answer :
Sure, let's go through the solution step by step for the given problem.
(a) Ceteris Paribus Analysis
To analyze the impact of each variable on the model, we'll consider the coefficient of each variable in the inverse demand model and determine how the changes in these variables affect the value of [tex]\( y \)[/tex]. We'll also classify the variables as endogenous or exogenous and explain whether they cause a shift or movement along the demand curve.
1. Model 1:
[tex]\[ y = 300 - 0.1x_1 + 200x_2 + 100x_3 + 0.05x_4 \][/tex]
- [tex]\( x_1 \)[/tex] (Number of listings): Coefficient = [tex]\(-0.1\)[/tex]
- Impact: As [tex]\( x_1 \)[/tex] increases, [tex]\( y \)[/tex] decreases.
- Type: Endogenous, part of the model itself.
- Change: Movement along the model.
- [tex]\( x_2 \)[/tex] (Bedrooms): Coefficient = [tex]\(200\)[/tex]
- Impact: As [tex]\( x_2 \)[/tex] increases, [tex]\( y \)[/tex] increases.
- Type: Exogenous, influences demand but not directly part of [tex]\( y \)[/tex].
- Change: Shift in the model.
- [tex]\( x_3 \)[/tex] (Bathrooms): Coefficient = [tex]\(100\)[/tex]
- Impact: As [tex]\( x_3 \)[/tex] increases, [tex]\( y \)[/tex] increases.
- Type: Exogenous.
- Change: Shift in the model.
- [tex]\( x_4 \)[/tex] (Lot size in square feet): Coefficient = [tex]\(0.05\)[/tex]
- Impact: As [tex]\( x_4 \)[/tex] increases, [tex]\( y \)[/tex] increases.
- Type: Exogenous.
- Change: Shift in the model.
(b) Calculate Estimated Mortgage Price Using Model 1
To estimate the mortgage price for a single-family home with the given features:
- [tex]\( x_1 = 5,000 \)[/tex]
- [tex]\( x_2 = 4 \)[/tex] bedrooms
- [tex]\( x_3 = 2 \)[/tex] bathrooms
- [tex]\( x_4 = 3,000 \)[/tex] sq ft lot size
Substitute these values into Model 1:
[tex]\[ y = 300 - 0.1(5,000) + 200(4) + 100(2) + 0.05(3,000) \][/tex]
Let's calculate each part step by step:
- Calculate [tex]\( -0.1 \times 5,000 = -500 \)[/tex].
- Calculate [tex]\( 200 \times 4 = 800 \)[/tex].
- Calculate [tex]\( 100 \times 2 = 200 \)[/tex].
- Calculate [tex]\( 0.05 \times 3,000 = 150 \)[/tex].
Now, plug these calculations into the equation for [tex]\( y \)[/tex]:
[tex]\[ y = 300 - 500 + 800 + 200 + 150 \][/tex]
Combine all the numbers:
[tex]\[ y = 950 \][/tex]
So, the estimated mortgage price using Model 1 is $950.
(a) Ceteris Paribus Analysis
To analyze the impact of each variable on the model, we'll consider the coefficient of each variable in the inverse demand model and determine how the changes in these variables affect the value of [tex]\( y \)[/tex]. We'll also classify the variables as endogenous or exogenous and explain whether they cause a shift or movement along the demand curve.
1. Model 1:
[tex]\[ y = 300 - 0.1x_1 + 200x_2 + 100x_3 + 0.05x_4 \][/tex]
- [tex]\( x_1 \)[/tex] (Number of listings): Coefficient = [tex]\(-0.1\)[/tex]
- Impact: As [tex]\( x_1 \)[/tex] increases, [tex]\( y \)[/tex] decreases.
- Type: Endogenous, part of the model itself.
- Change: Movement along the model.
- [tex]\( x_2 \)[/tex] (Bedrooms): Coefficient = [tex]\(200\)[/tex]
- Impact: As [tex]\( x_2 \)[/tex] increases, [tex]\( y \)[/tex] increases.
- Type: Exogenous, influences demand but not directly part of [tex]\( y \)[/tex].
- Change: Shift in the model.
- [tex]\( x_3 \)[/tex] (Bathrooms): Coefficient = [tex]\(100\)[/tex]
- Impact: As [tex]\( x_3 \)[/tex] increases, [tex]\( y \)[/tex] increases.
- Type: Exogenous.
- Change: Shift in the model.
- [tex]\( x_4 \)[/tex] (Lot size in square feet): Coefficient = [tex]\(0.05\)[/tex]
- Impact: As [tex]\( x_4 \)[/tex] increases, [tex]\( y \)[/tex] increases.
- Type: Exogenous.
- Change: Shift in the model.
(b) Calculate Estimated Mortgage Price Using Model 1
To estimate the mortgage price for a single-family home with the given features:
- [tex]\( x_1 = 5,000 \)[/tex]
- [tex]\( x_2 = 4 \)[/tex] bedrooms
- [tex]\( x_3 = 2 \)[/tex] bathrooms
- [tex]\( x_4 = 3,000 \)[/tex] sq ft lot size
Substitute these values into Model 1:
[tex]\[ y = 300 - 0.1(5,000) + 200(4) + 100(2) + 0.05(3,000) \][/tex]
Let's calculate each part step by step:
- Calculate [tex]\( -0.1 \times 5,000 = -500 \)[/tex].
- Calculate [tex]\( 200 \times 4 = 800 \)[/tex].
- Calculate [tex]\( 100 \times 2 = 200 \)[/tex].
- Calculate [tex]\( 0.05 \times 3,000 = 150 \)[/tex].
Now, plug these calculations into the equation for [tex]\( y \)[/tex]:
[tex]\[ y = 300 - 500 + 800 + 200 + 150 \][/tex]
Combine all the numbers:
[tex]\[ y = 950 \][/tex]
So, the estimated mortgage price using Model 1 is $950.