Arrange the legs of the trip from highest velocity to lowest by calculating the average velocity for each leg.

[tex]\[

\begin{array}{|c|c|c|}

\hline

\text{Leg} & \text{Distance (km)} & \text{Time (min)} \\

\hline

A & 18 & 9 \\

B & 25 & 15 \\

C & 24 & 8 \\

D & 48 & 12 \\

E & 15 & 7 \\

\hline

\end{array}

\][/tex]

Calculate the velocity for each leg:
- Leg A: [tex]\( \frac{18}{9} \, \text{km/min} \)[/tex]
- Leg B: [tex]\( \frac{25}{15} \, \text{km/min} \)[/tex]
- Leg C: [tex]\( \frac{24}{8} \, \text{km/min} \)[/tex]
- Leg D: [tex]\( \frac{48}{12} \, \text{km/min} \)[/tex]
- Leg E: [tex]\( \frac{15}{7} \, \text{km/min} \)[/tex]

Then, arrange them from highest to lowest velocity.

Answer :

To find the average velocity for each leg of Adam's bus trip and arrange the legs from highest to lowest velocity, we can follow these steps:

1. Understanding Average Velocity: Average velocity is calculated by dividing the distance traveled by the time taken. It's given in km/min here.

2. Calculate the Average Velocity for Each Leg:
- Leg A: Distance = 18 km, Time = 9 min.
Average velocity = 18 km / 9 min = 2.0 km/min.

- Leg B: Distance = 25 km, Time = 15 min.
Average velocity = 25 km / 15 min ≈ 1.67 km/min.

- Leg C: Distance = 24 km, Time = 8 min.
Average velocity = 24 km / 8 min = 3.0 km/min.

- Leg D: Distance = 48 km, Time = 12 min.
Average velocity = 48 km / 12 min = 4.0 km/min.

- Leg E: Distance = 15 km, Time = 7 min.
Average velocity = 15 km / 7 min ≈ 2.14 km/min.

3. Arrange the Legs from Highest to Lowest Velocity:
- Leg D: 4.0 km/min
- Leg C: 3.0 km/min
- Leg E: 2.14 km/min
- Leg A: 2.0 km/min
- Leg B: 1.67 km/min

Thus, the legs arranged from highest to lowest velocity are D, C, E, A, and B.