High School

Apply the laws of logarithms to the expression [tex]\log_{10} \frac{18}{20}[/tex].

A. [tex]20 \log_{10} 18[/tex]

B. [tex]18 \log_{10} 20[/tex]

C. [tex]\log_{10} 18 - \log_{10} 20[/tex]

D. [tex]\log_{10} 18 + \log_{10} 20[/tex]

Answer :

To solve the problem of applying the laws of logarithms to the expression [tex]\(\log_{10} \frac{18}{20}\)[/tex], we use the properties of logarithms, specifically the quotient rule.

The quotient rule for logarithms states:
[tex]\[
\log_b \left(\frac{a}{c}\right) = \log_b(a) - \log_b(c)
\][/tex]

In our given expression [tex]\(\log_{10} \frac{18}{20}\)[/tex], we can apply this rule as follows:

- Identify [tex]\(a\)[/tex] and [tex]\(c\)[/tex]: in this case, [tex]\(a = 18\)[/tex] and [tex]\(c = 20\)[/tex].
- Apply the quotient rule:
[tex]\[
\log_{10} \frac{18}{20} = \log_{10} 18 - \log_{10} 20
\][/tex]

Therefore, the correct application of the logarithm laws results in:
[tex]\(\log_{10} 18 - \log_{10} 20\)[/tex], which corresponds to option C.

So, the answer is C: [tex]\(\log_{10} 18 - \log_{10} 20\)[/tex].