College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Apply Horner's method to:

[tex]
\[
\frac{15x^6 - 9x^5 + 56x^4 + 70x^3 + 73x - 23}{3x^2 + 7x + 11}
\]
[/tex]

Answer :

To apply polynomial long division using Horner's method for the given polynomials, let us divide the polynomial [tex]\(15x^6 - 9x^5 + 56x^4 + 70x^3 + 73x - 23\)[/tex] by [tex]\(3x^2 + 7x + 11\)[/tex].

### Step-by-Step Solution:

1. Identify the leading terms and divide:
- The leading term of the numerator is [tex]\(15x^6\)[/tex].
- The leading term of the denominator is [tex]\(3x^2\)[/tex].
- Divide these leading terms: [tex]\(\frac{15x^6}{3x^2} = 5x^4\)[/tex].

2. Multiply the entire divisor by this result:
- [tex]\(5x^4 \cdot (3x^2 + 7x + 11) = 15x^6 + 35x^5 + 55x^4\)[/tex].

3. Subtract this result from the original numerator:
[tex]\[
(15x^6 - 9x^5 + 56x^4 + 70x^3 + 73x - 23) - (15x^6 + 35x^5 + 55x^4) = -44x^5 + x^4 + 70x^3 + 73x - 23
\][/tex]

4. Repeat the process with the new polynomial:
- Divide the leading terms: [tex]\(\frac{-44x^5}{3x^2} = -\frac{44}{3}x^3\)[/tex].
- Multiply the entire divisor by this result:
[tex]\[
-\frac{44}{3}x^3 \cdot (3x^2 + 7x + 11) = -44x^5 - \frac{308}{3}x^4 - \frac{484}{3}x^3
\][/tex]
- Subtract:
[tex]\[
(-44x^5 + x^4 + 70x^3 + 73x - 23) - (-44x^5 - \frac{308}{3}x^4 - \frac{484}{3}x^3) = \left(1 + \frac{308}{3}\right)x^4 + \left(70 + \frac{484}{3}\right)x^3 + 73x - 23
\][/tex]
[tex]\[
= \frac{311}{3}x^4 + \frac{694}{3}x^3 + 73x - 23
\][/tex]

5. Continue this process iteratively:
- Next division: [tex]\(\frac{\frac{311}{3}x^4}{3x^2} = \frac{311}{9}x^2\)[/tex].
- Multiply and subtract:
[tex]\[
\frac{311}{9}x^2 \cdot (3x^2 + 7x + 11) = \frac{311}{3}x^4 + \frac{2177}{9}x^3 + \frac{3421}{9}x^2
\][/tex]
[tex]\[
\left(\frac{311}{3}x^4 + \frac{694}{3}x^3 + 73x - 23\right) - \left(\frac{311}{3}x^4 + \frac{2177}{9}x^3 + \frac{3421}{9}x^2\right) = -\frac{9598}{27}x^2 + 73x - 23
\][/tex]

6. Proceed with next division and subtraction:
- Next division: [tex]\(\frac{-\frac{9598}{27}x^2}{3x^2} = -\frac{9598}{81}\)[/tex].
- Resulting polynomial becomes:
[tex]\[
-\frac{9598}{81}(3x^2 + 7x + 11) = -\frac{9598}{27}x^2 - \frac{67186}{81}x - \frac{105578}{81}
\][/tex]
[tex]\[
\left(-\frac{9598}{27}x^2 + 73x - 23\right) - \left(-\frac{9598}{27}x^2 - \frac{67186}{81}x - \frac{105578}{81}\right) = \left(73 + \frac{67186}{81}\right)x + \left(-23 + \frac{105578}{81}\right)
\][/tex]
[tex]\[
= \frac{76234}{81}x + \frac{103715}{81}
\][/tex]

Thus, our quotient is [tex]\(5x^4 - \frac{44}{3}x^3 + \frac{311}{9}x^2 - \frac{9598}{81}\)[/tex] and the remainder is [tex]\(\frac{76234}{81}x + \frac{103715}{81}\)[/tex].

In summarized form:

[tex]\[
\frac{15x^6 - 9x^5 + 56x^4 + 70x^3 + 73x - 23}{3x^2 + 7x + 11} = 5x^4 - \frac{44}{3}x^3 + \frac{311}{9}x^2 - \frac{95}{27}x - \frac{9598}{81} + \frac{\frac{76234}{81}x + \frac{103715}{81}}{3x^2 + 7x + 11}
\][/tex]