Answer :
■ complementary angles ■
[tex]\rule{350}{2}[/tex]
▸ two complementary angles always add up to 90°. so, to find the value of x, we can set up an equation:
[tex]\longmapsto\quad\sf{2x+6+62=90}[/tex]
solve for x:
[tex]\longmapsto\quad\sf{2x+68=90}[/tex]
[tex]\longmapsto\quad\sf{2x=22}[/tex]
[tex]\longmapsto\quad\sf{x=11}[/tex]
therefore, x = 11.
[tex]\rule{350}{2}[/tex]
regards..!
Answer:
x = 11
Step-by-step explanation:
complementary angles sum to 90° , that is
∠ R +∠ S = 90 ( substitute values )
2x + 6 + 62 = 90
2x + 68 = 90 ( subtract 68 from both sides )
2x = 22 ( divide both side by 2 )
x = 11