High School

An object with a mass of 8.4 kg is moving with an initial speed of 9.6 m/s. If a net work of 163 N·m is done on this object, what is the final speed of the object? Express your answer in units of m/s using one decimal place.

Answer :

The final speed of the object is approximately 11.4 m/s.

To determine the final speed of the object, we can use the Work-Energy Theorem. This theorem states that the work done on an object is equal to its change in kinetic energy. The formula for kinetic energy (KE) is:

[tex]KE = \frac{1}{2}mv^2[/tex]

Given:

  • Mass (m) = 8.4 kg
  • Initial speed ([tex]v_{i}[/tex]) = 9.6 m/s
  • Work done (W) = 163 N·m

First, we calculate the initial kinetic energy ([tex]KE_{i}[/tex]) of the object:

[tex]KE_i = \frac{1}{2} m v_i^2[/tex]

Substituting the given values:

[tex]KE_i = \frac{1}{2} \times 8.4 \text{ kg} \times (9.6 \text{ m/s})^2[/tex]

[tex]KE_i = \frac{1}{2} \times 8.4 \times 92.16[/tex]

[tex]KE_i = 4.2 \times 92.16[/tex]

[tex]KE_i = 387.07 \text{ J}[/tex]

Next, the work-energy theorem tells us that the net work done (W) on the object results in a change in kinetic energy, so the final kinetic energy ([tex]KE_{f}[/tex]) is:

[tex]KE_f = KE_i + W[/tex]

[tex]KE_f = 387.07 \text{ J} + 163 \text{ J}[/tex]

[tex]KE_f = 550.07 \text{ J}[/tex]

Now, we use the final kinetic energy to find the final speed ([tex]v_{f}[/tex]):

[tex]KE_f = \frac{1}{2} m v_f^2[/tex]

Solving for [tex]v_f[/tex]:

[tex]550.07 = \frac{1}{2} \times 8.4 \times v_f^2[/tex]

[tex]550.07 = 4.2 \times v_f^2[/tex]

[tex]v_f^2 = \frac{550.07}{4.2}[/tex]

[tex]v_f^2 = 130.97[/tex]

[tex]v_f = \sqrt{130.97}[/tex]

[tex]v_f \approx 11.4 \text{ m/s}[/tex]