High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ An expression is shown:

[tex]\frac{\left(12 \times 10^2\right)-\left(7 \times 10^2\right)}{\left(8 \times 10^5\right)}[/tex]

Which expression is equivalent?

A. [tex]6.25 \times 10^{-4}[/tex]

B. [tex]6.25 \times 10^{-1}[/tex]

C. [tex]6.25 \times 10^5[/tex]

D. [tex]6.25 \times 10^4[/tex]

Answer :

Let's solve the given expression step-by-step to find which option is equivalent.

The expression given is:

[tex]\[
\frac{(12 \times 10^2) - (7 \times 10^2)}{(8 \times 10^5)}
\][/tex]

1. Calculate the Numerator:

[tex]\((12 \times 10^2) - (7 \times 10^2)\)[/tex]

- First, compute [tex]\(12 \times 10^2 = 1200\)[/tex].
- Then, compute [tex]\(7 \times 10^2 = 700\)[/tex].
- Subtract these results: [tex]\(1200 - 700 = 500\)[/tex].

So, the numerator is [tex]\(500\)[/tex].

2. Calculate the Denominator:

[tex]\((8 \times 10^5)\)[/tex]

This is simply [tex]\(800,000\)[/tex].

3. Form the Fraction and Simplify:

Now, form the fraction using the calculated numerator and denominator:

[tex]\[
\frac{500}{800,000}
\][/tex]

Divide the numerator by the denominator:

[tex]\[
\frac{500}{800,000} = 0.000625
\][/tex]

4. Convert the Result to Scientific Notation:

The result [tex]\(0.000625\)[/tex] can be written in scientific notation. To express it, move the decimal point four places to the right:

[tex]\[
0.000625 = 6.25 \times 10^{-4}
\][/tex]

5. Find the Equivalent Expression:

Comparing with the choices given:

- A. [tex]\(6.25 \times 10^{-4}\)[/tex]
- B. [tex]\(6.25 \times 10^{-1}\)[/tex]
- C. [tex]\(6.25 \times 10^5\)[/tex]
- D. [tex]\(6.25 \times 10^4\)[/tex]

The equivalent expression for the fraction is [tex]\(6.25 \times 10^{-4}\)[/tex].

Therefore, the correct answer is [tex]\(\boxed{A}\)[/tex].