College

An engineer is studying the number of miles that vehicles travel before requiring significant repairs. The following table shows the data collected. Find the standard deviation of the data. Round your answer to the nearest whole number.

\begin{tabular}{|l|l|}
\hline
Miles Ran & Frequency [tex]$(f)$[/tex] \\
\hline
[tex]$5001-20000$[/tex] & 1 \\
\hline
[tex]$20001-45000$[/tex] & 3 \\
\hline
[tex]$45001-60000$[/tex] & 12 \\
\hline
[tex]$60001-75000$[/tex] & 13 \\
\hline
[tex]$75001-90000$[/tex] & 19 \\
\hline
[tex]$90001-105000$[/tex] & 26 \\
\hline
\end{tabular}

Answer :

Sure, let's find the standard deviation of the given data step-by-step.

### Step 1: Understand the Data
We have the following mileage ranges and their frequencies:

| Miles Ran | Frequency |
|--------------------|-----------|
| 5001 - 20000 | 1 |
| 20001 - 45000 | 3 |
| 45001 - 60000 | 12 |
| 60001 - 75000 | 13 |
| 75001 - 90000 | 19 |
| 90001 - 105000 | 26 |

### Step 2: Calculate the Midpoints
For each mileage range, calculate the midpoint (average of the lower and upper bounds):

- Midpoint of 5001 - 20000 = (5001 + 20000) / 2 = 12500.5
- Midpoint of 20001 - 45000 = (20001 + 45000) / 2 = 32500.5
- Midpoint of 45001 - 60000 = (45001 + 60000) / 2 = 52500.5
- Midpoint of 60001 - 75000 = (60001 + 75000) / 2 = 67500.5
- Midpoint of 75001 - 90000 = (75001 + 90000) / 2 = 82500.5
- Midpoint of 90001 - 105000 = (90001 + 105000) / 2 = 97500.5

### Step 3: Calculate the Mean
To find the mean (average) of the data, use the following formula:
[tex]\[ \text{Mean} = \frac{\sum (\text{midpoint} \times \text{frequency})}{\sum \text{frequency}} \][/tex]

First, calculate the total frequency:
[tex]\[ \text{Total frequency} = 1 + 3 + 12 + 13 + 19 + 26 = 74 \][/tex]

Next, calculate the sum of the products of midpoints and frequencies:
[tex]\[ \sum (\text{midpoint} \times \text{frequency}) = 12500.5 \times 1 + 32500.5 \times 3 + 52500.5 \times 12 + 67500.5 \times 13 + 82500.5 \times 19 + 97500.5 \times 26 \][/tex]
[tex]\[ = 12500.5 + 97501.5 + 630006 + 877506.5 + 1568509.5 + 2532013 = 5718036 \][/tex]

Now, calculate the mean:
[tex]\[ \text{Mean} = \frac{5718036}{74} = 77297.8 \][/tex]

### Step 4: Calculate the Variance
Variance is calculated using the formula:
[tex]\[ \text{Variance} = \frac{\sum (\text{frequency} \times (\text{midpoint} - \text{mean})^2)}{\sum \text{frequency}} \][/tex]

Calculate each term of the sum:
[tex]\[ (12500.5 - 77297.8)^2 \times 1 = 4188619471.2 \][/tex]
[tex]\[ (32500.5 - 77297.8)^2 \times 3 = 6702683131.3 \][/tex]
[tex]\[ (52500.5 - 77297.8)^2 \times 12 = 6157698756.8 \][/tex]
[tex]\[ (67500.5 - 77297.8)^2 \times 13 = 1300982134.9 \][/tex]
[tex]\[ (82500.5 - 77297.8)^2 \times 19 = 439510888.5 \][/tex]
[tex]\[ (97500.5 - 77297.8)^2 \times 26 = 1126357096.3 \][/tex]

Sum these values:
[tex]\[ 4188619471.2 + 6702683131.3 + 6157698756.8 + 1300982134.9 + 439510888.5 + 1126357096.3 = 29971958479.2 \][/tex]

Calculate the variance:
[tex]\[ \text{Variance} = \frac{29971958479.2}{74} = 405026479.2 \][/tex]

### Step 5: Calculate the Standard Deviation
The standard deviation is the square root of the variance:
[tex]\[ \text{Standard Deviation} = \sqrt{405026479.2} \approx 20125 \][/tex]

### Final Answer
The standard deviation of the data is approximately [tex]\( \boxed{20125} \)[/tex].