High School

An art student wants to make a model of the classroom. The length of the classroom is 2.4 times its width. The length of the student’s model is 42 inches. What should the width of the model be?

A. 17.5 in
B. 20.5 in
C. 83.6 in
D. 100.8 in

Answer :

Width of the model is:

17.5 in

Step-by-step explanation:

The length of the classroom is 2.4 times its width.

Length=2.4×width

The length of the student's model is 42 in.

Let w be the width of student's model.

By using the equation Length=2.4×width , we get

42=2.4×w

⇒ w=(42)/(2.4)

⇒ w=17.5

Hence, width of the model is:

17.5 in

[tex]\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \small\boxed{\begin{array}{c |c} \tt{Classes} & \tt{Frequency} \\ \dfrac{\qquad\qquad}{ \sf 0-10} &\dfrac{\qquad\qquad}{ \sf 5} & \\ \dfrac{\qquad\qquad}{ \sf 10-20} &\dfrac{\qquad\qquad}{ \sf 10} & \\ \dfrac{\qquad\qquad}{ \sf 20-30} &\dfrac{\qquad\qquad}{ \sf 18} & \\ \dfrac{\qquad\qquad}{ \sf 30-40} &\dfrac{\qquad\qquad}{ \sf 30} & \\ \dfrac{\qquad\qquad}{ \sf 40-50} &\dfrac{\qquad\qquad}{ \sf 20} & \\ \dfrac{\qquad\qquad}{ \sf 50-60} &\dfrac{\qquad\qquad}{ \sf 12} & \\ \dfrac{\qquad\qquad}{ \sf 60-70} &\dfrac{\qquad\qquad}{ \sf 5} &\end{array}} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}[/tex]