High School

An 18.6 kg person climbs up a uniform 143 N ladder. The upper and lower ends of the ladder rest on frictionless surfaces. The angle between the horizontal and the ladder is 66 degrees. Find the tension in the rope when the person is one-third of the way up the ladder. The acceleration of gravity is 9.8 m/s².

Answer :

An 18.6kg person climbs up a uniform 143n ladder, the upper and lower ends of the ladder rest on frictionless surfaces, the tension in the rope when the person one-third of the way up the ladder is is approximately [tex]\( 310.65 \, \text{N} \).[/tex]

To solve this problem, we can apply Newton's second law of motion.

First, let's find the forces acting on the ladder-person system when the person is one-third of the way up the ladder.

Let:

- m be the mass of the person, ( m = 18.6 ) kg

- g be the acceleration due to gravity, g = 9.8 m/s²

- T be the tension in the rope

- N be the normal force exerted by the ground on the ladder

- [tex]\( F_{\text{gravity}} \)[/tex] be the gravitational force acting on the ladder-person system

- [tex]\( F_{\text{person}} \)[/tex] be the force exerted by the person on the ladder

- [tex]\( F_{\text{ladder}} \)[/tex] be the force exerted by the ladder on the person

For equilibrium in the vertical direction, the sum of vertical forces equals zero:

[tex]\[ N + F_{\text{person}} - F_{\text{gravity}} = 0 \][/tex]

For equilibrium in the horizontal direction, the tension in the rope balances the horizontal component of the gravitational force:

[tex]\[ T = F_{\text{gravity}} \cdot \sin(66^\circ) \][/tex]

We need to find [tex]\( F_{\text{gravity}} \)[/tex] first.

The gravitational force acting on the ladder-person system is:

[tex]\[ F_{\text{gravity}} = (m + m_{\text{ladder}}) \cdot g \][/tex]

Given that the ladder has a weight of 143 N, and since weight (W) equals mass (m) times gravitational acceleration (g), we can find the mass of the ladder as follows:

[tex]\[ m_{\text{ladder}} = \frac{143 \, \text{N}}{g} \][/tex]

Now we can find the gravitational force:

[tex]\[ F_{\text{gravity}} = (m + m_{\text{ladder}}) \cdot g \][/tex]

[tex]\[ F_{\text{gravity}} = \left(18.6 \, \text{kg} + \frac{143 \, \text{N}}{g}\right) \cdot g \][/tex]

Now we can calculate T using the horizontal equilibrium equation:

[tex]\[ T = F_{\text{gravity}} \cdot \sin(66^\circ) \][/tex]

[tex]\[ T = \left(18.6 \, \text{kg} + \frac{143 \, \text{N}}{g}\right) \cdot g \cdot \sin(66^\circ) \][/tex]

[tex]\[ T \approx \left(18.6 \, \text{kg} + \frac{143 \, \text{N}}{9.8 \, \text{m/s}^2}\right) \times 9.8 \, \text{m/s}^2 \times \sin(66^\circ) \][/tex]

[tex]\[ T \approx \left(18.6 \, \text{kg} + \frac{143 \, \text{N}}{9.8 \, \text{m/s}^2}\right) \times 9.8 \, \text{m/s}^2 \times 0.9135 \][/tex]

[tex]\[ T \approx \left(18.6 \, \text{kg} + 14.59 \, \text{kg}\right) \times 9.8 \, \text{m/s}^2 \times 0.9135 \][/tex]

[tex]\[ T \approx 33.19 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 0.9135 \][/tex]

[tex]\[ T \approx 310.65 \, \text{N} \][/tex]

So, the tension in the rope when the person is one-third of the way up the ladder is approximately [tex]\( 310.65 \, \text{N} \).[/tex]