College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Add the two polynomials:

[tex]\left(4x^4 - 9x^3 - 5x\right) + \left(8x^4 - 10x^3 + 3\right)[/tex]

Answer :

To add the polynomials

[tex]$$4x^4 - 9x^3 - 5x \quad \text{and} \quad 8x^4 - 10x^3 + 3,$$[/tex]

we follow these steps:

1. Identify Like Terms:

- The terms with [tex]$x^4$[/tex] are [tex]$4x^4$[/tex] and [tex]$8x^4$[/tex].
- The terms with [tex]$x^3$[/tex] are [tex]$-9x^3$[/tex] and [tex]$-10x^3$[/tex].
- The term with [tex]$x$[/tex] is [tex]$-5x$[/tex] (from the first polynomial, with no corresponding [tex]$x$[/tex] term in the second).
- The constant term is [tex]$3$[/tex] (from the second polynomial).

2. Combine the Like Terms:

- For the [tex]$x^4$[/tex] terms:

[tex]$$
4x^4 + 8x^4 = 12x^4.
$$[/tex]

- For the [tex]$x^3$[/tex] terms:

[tex]$$
-9x^3 - 10x^3 = -19x^3.
$$[/tex]

- The [tex]$x$[/tex] term remains as:

[tex]$$
-5x.
$$[/tex]

- The constant term remains as:

[tex]$$
3.
$$[/tex]

3. Write the Resulting Polynomial:

Combine the results from the previous step to obtain:

[tex]$$
12x^4 - 19x^3 - 5x + 3.
$$[/tex]

Thus, the sum of the polynomials is

[tex]$$\boxed{12x^4 - 19x^3 - 5x + 3.}$$[/tex]