College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Add and simplify:

[tex]9x^3 - 3x^2 - 9x + 18[/tex] and [tex]7x - 29[/tex].

a) [tex]9x^3 + 3x^2 - 2x - 11[/tex]
b) [tex]9x^3 - 3x^2 - 2x - 11[/tex]
c) [tex]9x^3 - x^2 - 2x + 1[/tex]
d) [tex]9x^3 + 3x^2 + 2x + 11[/tex]

Answer :

To add and simplify the given polynomials [tex]\(9x^3 - 3x^2 - 9x + 18\)[/tex] and [tex]\(7x - 29\)[/tex], follow these steps:

1. Write down both polynomials clearly:
- First polynomial (P1): [tex]\(9x^3 - 3x^2 - 9x + 18\)[/tex]
- Second polynomial (P2): [tex]\(7x - 29\)[/tex]

2. Add the polynomials:
Combine like terms from both polynomials. This means adding together the terms that have the same power of [tex]\(x\)[/tex].

- Cubic term: [tex]\(9x^3\)[/tex] (This appears only in P1, so it remains [tex]\(9x^3\)[/tex].)
- Quadratic term: [tex]\(-3x^2\)[/tex] (This appears only in P1, so it remains [tex]\(-3x^2\)[/tex].)
- Linear term: [tex]\(-9x + 7x = -2x\)[/tex]
- Constant term: [tex]\(18 - 29 = -11\)[/tex]

3. Write the result after combining like terms:
The resulting polynomial after addition is:

[tex]\[
9x^3 - 3x^2 - 2x - 11
\][/tex]

Therefore, the simplified result of adding the two polynomials is [tex]\(9x^3 - 3x^2 - 2x - 11\)[/tex], which matches option (b).