High School

Actividad: Pensar en razones de fracciones a tu alrededor

Realicen esta actividad juntos para investigar razones de fracciones en el mundo real.

- Una de las mayores nevadas fue en Colorado en 1921. Nevó 87 pulgadas en [tex]$27 \frac{1}{2}$[/tex] horas. ¡Eso es un promedio de más de 3 pulgadas por hora!

- En 2017, un pueblo de Alaska recibió 15 pulgadas de nieve en [tex]$1 \frac{1}{2}$[/tex] horas. Eso puede no parecer mucha nieve, ¡pero nevó a una tasa de 10 pulgadas por hora!

Answer :

We begin by finding the snowfall rate (in inches per hour) for each location.

For Colorado:

1. It snowed [tex]$87$[/tex] inches in [tex]$27 \frac{1}{2}$[/tex] hours. First, convert the mixed number to a decimal:
[tex]$$27 \frac{1}{2} = 27.5 \text{ hours}.$$[/tex]

2. The rate of snowfall is the total inches of snow divided by the total number of hours:
[tex]$$
\text{Rate} = \frac{87}{27.5} \approx 3.1636\text{ inches per hour}.
$$[/tex]

For Alaska:

1. It snowed [tex]$15$[/tex] inches in [tex]$1 \frac{1}{2}$[/tex] hours. Converting the mixed number:
[tex]$$1 \frac{1}{2} = 1.5 \text{ hours}.$$[/tex]

2. Again, the rate is calculated by dividing the inches of snow by the hours:
[tex]$$
\text{Rate} = \frac{15}{1.5} = 10 \text{ inches per hour}.
$$[/tex]

Final Results:

- Colorado: [tex]$87$[/tex] inches in [tex]$27.5$[/tex] hours yields a snowfall rate of approximately [tex]$3.1636$[/tex] inches per hour.
- Alaska: [tex]$15$[/tex] inches in [tex]$1.5$[/tex] hours gives a snowfall rate of [tex]$10$[/tex] inches per hour.

Thus, the numerical outcome is:
[tex]$$
(87,\, 27.5,\, 3.1636363636363636,\, 15,\, 1.5,\, 10.0).
$$[/tex]