Answer :
To find the length of the base of a triangle given its area and height, we can use the formula for the area of a triangle:
[tex]\[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]
Rearranging the formula to solve for the base, we get:
[tex]\[ \text{base} = \frac{2 \times \text{Area}}{\text{height}} \][/tex]
Given:
- Area of the triangle = 38.4 square centimeters
- Height of the triangle = 12.8 centimeters
Now, let's plug these values into the equation:
[tex]\[ \text{base} = \frac{2 \times 38.4}{12.8} \][/tex]
First, multiply the area by 2:
[tex]\[ 2 \times 38.4 = 76.8 \][/tex]
Then, divide this result by the height:
[tex]\[ \text{base} = \frac{76.8}{12.8} = 6 \][/tex]
So, the length of the base of the triangle is 6 centimeters.
[tex]\[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]
Rearranging the formula to solve for the base, we get:
[tex]\[ \text{base} = \frac{2 \times \text{Area}}{\text{height}} \][/tex]
Given:
- Area of the triangle = 38.4 square centimeters
- Height of the triangle = 12.8 centimeters
Now, let's plug these values into the equation:
[tex]\[ \text{base} = \frac{2 \times 38.4}{12.8} \][/tex]
First, multiply the area by 2:
[tex]\[ 2 \times 38.4 = 76.8 \][/tex]
Then, divide this result by the height:
[tex]\[ \text{base} = \frac{76.8}{12.8} = 6 \][/tex]
So, the length of the base of the triangle is 6 centimeters.