Answer :
To find the capacitive reactance, we start with the formula
[tex]$$
X_C = \frac{1}{2 \pi f C},
$$[/tex]
where
- [tex]$f$[/tex] is the frequency in hertz, and
- [tex]$C$[/tex] is the capacitance in farads.
Step 1. Convert the capacitance to farads.
The capacitor is given as [tex]$25\,\mu F$[/tex]. Since
[tex]$$
1\,\mu F = 10^{-6}\,F,
$$[/tex]
we have
[tex]$$
C = 25 \times 10^{-6}\,F = 2.5 \times 10^{-5}\,F.
$$[/tex]
Step 2. Compute the angular frequency.
The angular frequency is
[tex]$$
\omega = 2 \pi f.
$$[/tex]
With [tex]$f = 150\,Hz$[/tex], this becomes
[tex]$$
\omega = 2 \pi (150) \approx 942.48\, \text{rad/s}.
$$[/tex]
Step 3. Compute the product [tex]$2 \pi f C$[/tex].
Multiply the angular frequency by the capacitance:
[tex]$$
2 \pi f C \approx 942.48 \times 2.5 \times 10^{-5} \approx 0.02356.
$$[/tex]
Step 4. Calculate the capacitive reactance.
Now, substitute the computed value into the formula:
[tex]$$
X_C = \frac{1}{0.02356} \approx 42.44\,\Omega.
$$[/tex]
Thus, the capacitive reactance is approximately
[tex]$$
\boxed{42.44\,\Omega}.
$$[/tex]
[tex]$$
X_C = \frac{1}{2 \pi f C},
$$[/tex]
where
- [tex]$f$[/tex] is the frequency in hertz, and
- [tex]$C$[/tex] is the capacitance in farads.
Step 1. Convert the capacitance to farads.
The capacitor is given as [tex]$25\,\mu F$[/tex]. Since
[tex]$$
1\,\mu F = 10^{-6}\,F,
$$[/tex]
we have
[tex]$$
C = 25 \times 10^{-6}\,F = 2.5 \times 10^{-5}\,F.
$$[/tex]
Step 2. Compute the angular frequency.
The angular frequency is
[tex]$$
\omega = 2 \pi f.
$$[/tex]
With [tex]$f = 150\,Hz$[/tex], this becomes
[tex]$$
\omega = 2 \pi (150) \approx 942.48\, \text{rad/s}.
$$[/tex]
Step 3. Compute the product [tex]$2 \pi f C$[/tex].
Multiply the angular frequency by the capacitance:
[tex]$$
2 \pi f C \approx 942.48 \times 2.5 \times 10^{-5} \approx 0.02356.
$$[/tex]
Step 4. Calculate the capacitive reactance.
Now, substitute the computed value into the formula:
[tex]$$
X_C = \frac{1}{0.02356} \approx 42.44\,\Omega.
$$[/tex]
Thus, the capacitive reactance is approximately
[tex]$$
\boxed{42.44\,\Omega}.
$$[/tex]