High School

(A) Solve the inequality:

\[ -10x - 25 \leq -220 \]

(B) Solve the inequality:

\[ -10x - 25 \geq -220 \]

2. Solve for \( x \):

\[ -3x - 12 = 60 \]

Answer :

We start with the inequality

[tex]$$-10x - 25 \leq -220.$$[/tex]

Step 1. Add 25 to both sides:

[tex]$$-10x - 25 + 25 \leq -220 + 25,$$[/tex]
[tex]$$-10x \leq -195.$$[/tex]

Step 2. Divide both sides by [tex]$-10$[/tex]. Remember, dividing by a negative number reverses the inequality sign:

[tex]$$x \geq \frac{-195}{-10}.$$[/tex]
[tex]$$x \geq 19.5.$$[/tex]

Thus, the solution for the inequality is

[tex]$$x \geq 19.5.$$[/tex]

---

Next, consider the inequality

[tex]$$-10x - 25 \geq -220.$$[/tex]

Step 1. Add 25 to both sides:

[tex]$$-10x \geq -220 + 25,$$[/tex]
[tex]$$-10x \geq -195.$$[/tex]

Step 2. Divide both sides by [tex]$-10$[/tex], reversing the inequality:

[tex]$$x \leq \frac{-195}{-10}.$$[/tex]
[tex]$$x \leq 19.5.$$[/tex]

Thus, the solution for the inequality is

[tex]$$x \leq 19.5.$$[/tex]

---

Now, we solve the equation

[tex]$$-3x - 12 = 60.$$[/tex]

Step 1. Add 12 to both sides:

[tex]$$-3x - 12 + 12 = 60 + 12,$$[/tex]
[tex]$$-3x = 72.$$[/tex]

Step 2. Divide both sides by [tex]$-3$[/tex]:

[tex]$$x = \frac{72}{-3},$$[/tex]
[tex]$$x = -24.$$[/tex]

---

In summary:

1. For the inequality [tex]$$-10x - 25 \leq -220,$$[/tex] we found [tex]$$x \geq 19.5.$$[/tex]
2. For the inequality [tex]$$-10x - 25 \geq -220,$$[/tex] we found [tex]$$x \leq 19.5.$$[/tex]
3. For the equation [tex]$$-3x - 12 = 60,$$[/tex] we found [tex]$$x = -24.$$[/tex]