College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ A right cylinder has a circumference of [tex]$16 \pi \, \text{cm}$[/tex]. Its height is half the radius. Identify the lateral area and the surface area of the cylinder.

A. [tex]L \approx 201.1 \, \text{cm}^2[/tex]; [tex]S \approx 401.8 \, \text{cm}^2[/tex]

B. [tex]L \approx 100.5 \, \text{cm}^2[/tex]; [tex]S \approx 603.2 \, \text{cm}^2[/tex]

C. [tex]L \approx 100.5 \, \text{cm}^2[/tex]; [tex]S \approx 401.8 \, \text{cm}^2[/tex]

D. [tex]L \approx 201.1 \, \text{cm}^2[/tex]; [tex]S \approx 603.2 \, \text{cm}^2[/tex]

Answer :

To solve the problem, we need to find the lateral area and the surface area of the right cylinder.

Step 1: Determine the radius of the cylinder.

The circumference of the base of the cylinder is given as [tex]\(16 \pi \, \text{cm}\)[/tex].

The formula for the circumference of a circle is:
[tex]\[ C = 2 \pi r \][/tex]

So, we set up the equation:
[tex]\[ 16 \pi = 2 \pi r \][/tex]

To find the radius [tex]\(r\)[/tex], divide both sides by [tex]\(2 \pi\)[/tex]:
[tex]\[ r = \frac{16 \pi}{2 \pi} = 8 \, \text{cm} \][/tex]

Step 2: Determine the height of the cylinder.

We are told that the height [tex]\(h\)[/tex] is half of the radius:
[tex]\[ h = \frac{1}{2} \times 8 = 4 \, \text{cm} \][/tex]

Step 3: Calculate the lateral area of the cylinder.

The formula for the lateral area [tex]\(L\)[/tex] of a cylinder is:
[tex]\[ L = 2 \pi r h \][/tex]

Substitute the values for [tex]\(r\)[/tex] and [tex]\(h\)[/tex]:
[tex]\[ L = 2 \pi \times 8 \times 4 = 201.1 \, \text{cm}^2 \][/tex] (rounded to one decimal place)

Step 4: Calculate the surface area of the cylinder.

The surface area [tex]\(S\)[/tex] is the sum of the lateral area and the area of the two circular bases. The formula for the surface area is:
[tex]\[ S = L + 2 \pi r^2 \][/tex]

First, calculate the area of the two bases:
[tex]\[ 2 \pi r^2 = 2 \pi \times 8^2 = 128 \pi \][/tex]

So:
[tex]\[ S = 201.1 + 128 \pi = 603.2 \, \text{cm}^2 \][/tex] (rounded to one decimal place)

So, the lateral area is approximately [tex]\(201.1 \, \text{cm}^2\)[/tex] and the surface area is approximately [tex]\(603.2 \, \text{cm}^2\)[/tex].

The correct choice is:
[tex]\[ L \approx 201.1 \, \text{cm}^2 ; S \approx 603.2 \, \text{cm}^2 \][/tex]