High School

A function, [tex]f[/tex], is defined by [tex]f(x, y) = 3x^2 - 4y[/tex]. What is the value of [tex]f(3, 2)[/tex]?

A. 0
B. 10
C. 19
D. 24
E. 28

Answer :

To find the value of [tex]\( f(3, 2) \)[/tex] for the function [tex]\( f(x, y) = 3x^2 - 4y \)[/tex], we can follow these steps:

1. Identify the function: The function is given as [tex]\( f(x, y) = 3x^2 - 4y \)[/tex]. It involves two variables, [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

2. Plug in the values: We need to calculate [tex]\( f(3, 2) \)[/tex]. This means plugging [tex]\( x = 3 \)[/tex] and [tex]\( y = 2 \)[/tex] into the function.

3. Calculate [tex]\( x^2 \)[/tex]: First, we compute [tex]\( x^2 \)[/tex] where [tex]\( x = 3 \)[/tex].
[tex]\[
3^2 = 9
\][/tex]

4. Multiply by the coefficient: Multiply the result by 3.
[tex]\[
3 \times 9 = 27
\][/tex]

5. Calculate the [tex]\( y \)[/tex] term: Multiply 4 by [tex]\( y = 2 \)[/tex].
[tex]\[
4 \times 2 = 8
\][/tex]

6. Subtract the [tex]\( y \)[/tex] term from the [tex]\( x \)[/tex] term: Subtract the result of the [tex]\( y \)[/tex] term from the result of the [tex]\( x \)[/tex] term.
[tex]\[
27 - 8 = 19
\][/tex]

Therefore, the value of [tex]\( f(3, 2) \)[/tex] is [tex]\(\boxed{19}\)[/tex].