Answer :
To find the mass of the stone, we can use the formula for kinetic energy:
[tex]\[
\text{Kinetic Energy (KE)} = \frac{1}{2} \times \text{mass} \times \text{velocity}^2
\][/tex]
We are given:
- [tex]\(\text{Kinetic Energy (KE)} = 1792 \, \text{Joules}\)[/tex]
- [tex]\(\text{velocity} = 16 \, \text{m/s}\)[/tex]
We need to solve for the mass. Rearranging the formula to solve for mass, we get:
[tex]\[
\text{mass} = \frac{2 \times \text{Kinetic Energy (KE)}}{\text{velocity}^2}
\][/tex]
Substituting the given values:
[tex]\[
\text{mass} = \frac{2 \times 1792}{16^2}
\][/tex]
Calculating the value:
1. Compute [tex]\(16^2 = 256\)[/tex].
2. Calculate [tex]\(2 \times 1792 = 3584\)[/tex].
3. Finally, divide [tex]\(3584\)[/tex] by [tex]\(256\)[/tex]:
[tex]\[
\text{mass} = \frac{3584}{256} = 14
\][/tex]
Therefore, the mass of the stone is [tex]\(14 \, \text{kg}\)[/tex].
The correct answer is A. 14 kg.
[tex]\[
\text{Kinetic Energy (KE)} = \frac{1}{2} \times \text{mass} \times \text{velocity}^2
\][/tex]
We are given:
- [tex]\(\text{Kinetic Energy (KE)} = 1792 \, \text{Joules}\)[/tex]
- [tex]\(\text{velocity} = 16 \, \text{m/s}\)[/tex]
We need to solve for the mass. Rearranging the formula to solve for mass, we get:
[tex]\[
\text{mass} = \frac{2 \times \text{Kinetic Energy (KE)}}{\text{velocity}^2}
\][/tex]
Substituting the given values:
[tex]\[
\text{mass} = \frac{2 \times 1792}{16^2}
\][/tex]
Calculating the value:
1. Compute [tex]\(16^2 = 256\)[/tex].
2. Calculate [tex]\(2 \times 1792 = 3584\)[/tex].
3. Finally, divide [tex]\(3584\)[/tex] by [tex]\(256\)[/tex]:
[tex]\[
\text{mass} = \frac{3584}{256} = 14
\][/tex]
Therefore, the mass of the stone is [tex]\(14 \, \text{kg}\)[/tex].
The correct answer is A. 14 kg.