Answer :
We are given that the cat weighs [tex]$4600$[/tex] grams and need to convert this weight into pounds and ounces.
Step 1. Convert grams to pounds
We know that
[tex]$$1 \text{ pound} \approx 453.59237 \text{ grams}.$$[/tex]
Thus, the total weight in pounds is calculated as
[tex]$$ \text{pounds}_{\text{exact}} = \frac{4600}{453.59237} \approx 10.1413.$$[/tex]
Taking the integer part gives the number of whole pounds:
[tex]$$ \text{pounds} = 10.$$[/tex]
Step 2. Calculate remaining grams
After removing the weight corresponding to the whole pounds, the leftover grams are
[tex]$$ \text{remainder\_grams} = 4600 - (10 \times 453.59237) \approx 64.0763 \text{ grams}.$$[/tex]
Step 3. Convert the remaining grams to ounces
We know that
[tex]$$1 \text{ ounce} \approx 28.3495231 \text{ grams}.$$[/tex]
Compute the number of ounces in the remaining grams:
[tex]$$ \text{ounces} = \frac{64.0763}{28.3495231} \approx 2.259,$$[/tex]
which rounds to
[tex]$$ \text{ounces} = 2.$$[/tex]
Final Answer
The cat weighs [tex]$10$[/tex] pounds and [tex]$2$[/tex] ounces.
Thus, the correct answer is:
[tex]$$10 \text{ lbs. } 2 \text{ oz.}$$[/tex]
Step 1. Convert grams to pounds
We know that
[tex]$$1 \text{ pound} \approx 453.59237 \text{ grams}.$$[/tex]
Thus, the total weight in pounds is calculated as
[tex]$$ \text{pounds}_{\text{exact}} = \frac{4600}{453.59237} \approx 10.1413.$$[/tex]
Taking the integer part gives the number of whole pounds:
[tex]$$ \text{pounds} = 10.$$[/tex]
Step 2. Calculate remaining grams
After removing the weight corresponding to the whole pounds, the leftover grams are
[tex]$$ \text{remainder\_grams} = 4600 - (10 \times 453.59237) \approx 64.0763 \text{ grams}.$$[/tex]
Step 3. Convert the remaining grams to ounces
We know that
[tex]$$1 \text{ ounce} \approx 28.3495231 \text{ grams}.$$[/tex]
Compute the number of ounces in the remaining grams:
[tex]$$ \text{ounces} = \frac{64.0763}{28.3495231} \approx 2.259,$$[/tex]
which rounds to
[tex]$$ \text{ounces} = 2.$$[/tex]
Final Answer
The cat weighs [tex]$10$[/tex] pounds and [tex]$2$[/tex] ounces.
Thus, the correct answer is:
[tex]$$10 \text{ lbs. } 2 \text{ oz.}$$[/tex]