Answer :
To find the acceleration of the car, we can use the formula for acceleration:
[tex]\[ \text{acceleration} = \frac{\text{final velocity} - \text{initial velocity}}{\text{time}} \][/tex]
Let's break it down step-by-step:
1. Identify the given values:
- Initial velocity ([tex]\(v_i\)[/tex]) = 10.0 m/s
- Final velocity ([tex]\(v_f\)[/tex]) = 30.0 m/s
- Time ([tex]\(t\)[/tex]) = 5.00 s
2. Substitute these values into the formula:
[tex]\[ \text{acceleration} = \frac{30.0 \, \text{m/s} - 10.0 \, \text{m/s}}{5.00 \, \text{s}} \][/tex]
3. Perform the subtraction in the numerator:
[tex]\[ 30.0 \, \text{m/s} - 10.0 \, \text{m/s} = 20.0 \, \text{m/s} \][/tex]
4. Divide the result by the time:
[tex]\[ \text{acceleration} = \frac{20.0 \, \text{m/s}}{5.00 \, \text{s}} = 4.00 \, \text{m/s}^2 \][/tex]
So, the acceleration of the car is [tex]\(4.00 \, \text{m/s}^2\)[/tex]. Therefore, the correct answer is [tex]\( \boxed{4.00 \, \text{m/s}^2} \)[/tex].
[tex]\[ \text{acceleration} = \frac{\text{final velocity} - \text{initial velocity}}{\text{time}} \][/tex]
Let's break it down step-by-step:
1. Identify the given values:
- Initial velocity ([tex]\(v_i\)[/tex]) = 10.0 m/s
- Final velocity ([tex]\(v_f\)[/tex]) = 30.0 m/s
- Time ([tex]\(t\)[/tex]) = 5.00 s
2. Substitute these values into the formula:
[tex]\[ \text{acceleration} = \frac{30.0 \, \text{m/s} - 10.0 \, \text{m/s}}{5.00 \, \text{s}} \][/tex]
3. Perform the subtraction in the numerator:
[tex]\[ 30.0 \, \text{m/s} - 10.0 \, \text{m/s} = 20.0 \, \text{m/s} \][/tex]
4. Divide the result by the time:
[tex]\[ \text{acceleration} = \frac{20.0 \, \text{m/s}}{5.00 \, \text{s}} = 4.00 \, \text{m/s}^2 \][/tex]
So, the acceleration of the car is [tex]\(4.00 \, \text{m/s}^2\)[/tex]. Therefore, the correct answer is [tex]\( \boxed{4.00 \, \text{m/s}^2} \)[/tex].