Answer :
Sure, let's solve the problem step-by-step.
Given:
- Mass of the brick, [tex]\( m = 2.3 \)[/tex] kg
- Height, [tex]\( h = 1.9 \)[/tex] m
- Acceleration due to gravity, [tex]\( g = 9.8 \, m/s^2 \)[/tex]
We need to find the gravitational potential energy added to the brick. The gravitational potential energy (GPE) can be calculated using the formula:
[tex]\[ \text{GPE} = m \cdot g \cdot h \][/tex]
Now plug in the given values:
[tex]\[ m = 2.3 \, \text{kg} \][/tex]
[tex]\[ g = 9.8 \, m/s^2 \][/tex]
[tex]\[ h = 1.9 \, \text{m} \][/tex]
Substitute these values into the formula:
[tex]\[ \text{GPE} = 2.3 \, \text{kg} \times 9.8 \, m/s^2 \times 1.9 \, \text{m} \][/tex]
Let's do the multiplication step-by-step:
[tex]\[ \text{GPE} = 2.3 \times 9.8 \times 1.9 \][/tex]
[tex]\[ \text{GPE} = 2.3 \times 18.62 \][/tex]
[tex]\[ \text{GPE} = 42.826 \, \text{J} \][/tex]
When rounded to one decimal place, this is approximately:
[tex]\[ \text{GPE} \approx 42.8 \, \text{J} \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{42.8 \, \text{J}} \][/tex]
So, the gravitational potential energy added to the brick is 42.8 J, which corresponds to option D.
Given:
- Mass of the brick, [tex]\( m = 2.3 \)[/tex] kg
- Height, [tex]\( h = 1.9 \)[/tex] m
- Acceleration due to gravity, [tex]\( g = 9.8 \, m/s^2 \)[/tex]
We need to find the gravitational potential energy added to the brick. The gravitational potential energy (GPE) can be calculated using the formula:
[tex]\[ \text{GPE} = m \cdot g \cdot h \][/tex]
Now plug in the given values:
[tex]\[ m = 2.3 \, \text{kg} \][/tex]
[tex]\[ g = 9.8 \, m/s^2 \][/tex]
[tex]\[ h = 1.9 \, \text{m} \][/tex]
Substitute these values into the formula:
[tex]\[ \text{GPE} = 2.3 \, \text{kg} \times 9.8 \, m/s^2 \times 1.9 \, \text{m} \][/tex]
Let's do the multiplication step-by-step:
[tex]\[ \text{GPE} = 2.3 \times 9.8 \times 1.9 \][/tex]
[tex]\[ \text{GPE} = 2.3 \times 18.62 \][/tex]
[tex]\[ \text{GPE} = 42.826 \, \text{J} \][/tex]
When rounded to one decimal place, this is approximately:
[tex]\[ \text{GPE} \approx 42.8 \, \text{J} \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{42.8 \, \text{J}} \][/tex]
So, the gravitational potential energy added to the brick is 42.8 J, which corresponds to option D.