Answer :
We are given a mass and an acceleration, and we need to find the force using Newton’s second law, which is given by
[tex]$$
F = m \cdot a.
$$[/tex]
Step 1: Convert the mass to kilograms
The mass is given as 140 g. Since
[tex]$$
1 \text{ kg} = 1000 \text{ g},
$$[/tex]
we convert the mass to kilograms:
[tex]$$
m = \frac{140 \text{ g}}{1000} = 0.14 \text{ kg}.
$$[/tex]
Step 2: Apply the formula to calculate the force
The acceleration is given as [tex]$25 \text{ m/s}^2$[/tex]. Substitute the values into the formula:
[tex]$$
F = m \cdot a = 0.14 \text{ kg} \times 25 \text{ m/s}^2.
$$[/tex]
Step 3: Calculate the force
Multiply the numbers:
[tex]$$
F = 0.14 \times 25 = 3.5 \text{ N}.
$$[/tex]
Thus, the force needed to accelerate the ball is [tex]$\boxed{3.5 \text{ N}}$[/tex].
[tex]$$
F = m \cdot a.
$$[/tex]
Step 1: Convert the mass to kilograms
The mass is given as 140 g. Since
[tex]$$
1 \text{ kg} = 1000 \text{ g},
$$[/tex]
we convert the mass to kilograms:
[tex]$$
m = \frac{140 \text{ g}}{1000} = 0.14 \text{ kg}.
$$[/tex]
Step 2: Apply the formula to calculate the force
The acceleration is given as [tex]$25 \text{ m/s}^2$[/tex]. Substitute the values into the formula:
[tex]$$
F = m \cdot a = 0.14 \text{ kg} \times 25 \text{ m/s}^2.
$$[/tex]
Step 3: Calculate the force
Multiply the numbers:
[tex]$$
F = 0.14 \times 25 = 3.5 \text{ N}.
$$[/tex]
Thus, the force needed to accelerate the ball is [tex]$\boxed{3.5 \text{ N}}$[/tex].