Answer :
First, convert the mass from grams to kilograms. Since there are 1000 grams in a kilogram, we have
[tex]$$
140\, \text{g} = \frac{140}{1000}\, \text{kg} = 0.14\, \text{kg}.
$$[/tex]
Next, use the formula for force:
[tex]$$
F = m \cdot a,
$$[/tex]
where [tex]$m$[/tex] is the mass and [tex]$a$[/tex] is the acceleration. Plug in the values:
[tex]$$
F = 0.14\, \text{kg} \cdot 25\, \text{m/s}^2.
$$[/tex]
Perform the multiplication:
[tex]$$
F = 3.5\, \text{N}.
$$[/tex]
Thus, the force required is [tex]$\boxed{3.5\, \text{N}}$[/tex].
[tex]$$
140\, \text{g} = \frac{140}{1000}\, \text{kg} = 0.14\, \text{kg}.
$$[/tex]
Next, use the formula for force:
[tex]$$
F = m \cdot a,
$$[/tex]
where [tex]$m$[/tex] is the mass and [tex]$a$[/tex] is the acceleration. Plug in the values:
[tex]$$
F = 0.14\, \text{kg} \cdot 25\, \text{m/s}^2.
$$[/tex]
Perform the multiplication:
[tex]$$
F = 3.5\, \text{N}.
$$[/tex]
Thus, the force required is [tex]$\boxed{3.5\, \text{N}}$[/tex].