Answer :
To find the force needed to accelerate the ball, we will use the formula [tex]\( F = ma \)[/tex], where [tex]\( F \)[/tex] is the force, [tex]\( m \)[/tex] is the mass in kilograms, and [tex]\( a \)[/tex] is the acceleration.
1. Convert the mass from grams to kilograms:
- The mass of the ball is given as 140 grams.
- Convert grams to kilograms by dividing by 1000:
[tex]\[
m = \frac{140}{1000} = 0.14 \text{ kg}
\][/tex]
2. Use the formula [tex]\( F = ma \)[/tex]:
- We know the acceleration [tex]\( a \)[/tex] is 25 m/s².
- Substitute the values into the equation:
[tex]\[
F = 0.14 \, \text{kg} \times 25 \, \text{m/s}^2
\][/tex]
3. Calculate the force:
- Multiplying the mass and acceleration gives:
[tex]\[
F = 3.5 \, \text{N}
\][/tex]
Therefore, the force needed to accelerate the ball at [tex]\( 25 \, \text{m/s}^2 \)[/tex] is [tex]\( 3.5 \, \text{N} \)[/tex].
1. Convert the mass from grams to kilograms:
- The mass of the ball is given as 140 grams.
- Convert grams to kilograms by dividing by 1000:
[tex]\[
m = \frac{140}{1000} = 0.14 \text{ kg}
\][/tex]
2. Use the formula [tex]\( F = ma \)[/tex]:
- We know the acceleration [tex]\( a \)[/tex] is 25 m/s².
- Substitute the values into the equation:
[tex]\[
F = 0.14 \, \text{kg} \times 25 \, \text{m/s}^2
\][/tex]
3. Calculate the force:
- Multiplying the mass and acceleration gives:
[tex]\[
F = 3.5 \, \text{N}
\][/tex]
Therefore, the force needed to accelerate the ball at [tex]\( 25 \, \text{m/s}^2 \)[/tex] is [tex]\( 3.5 \, \text{N} \)[/tex].