Answer :
To determine which equation has a solution of [tex]\( x = 15 \)[/tex], we need to substitute [tex]\( x = 15 \)[/tex] into each of the given equations and check which one holds true.
Let's go through the options one by one:
A. [tex]\( x + 7 = 12 \)[/tex]
1. Substitute [tex]\( x = 15 \)[/tex] into the equation:
[tex]\( 15 + 7 \)[/tex]
2. Calculate the left side:
[tex]\( 22 \)[/tex]
3. Compare with the right side (12):
[tex]\( 22 \neq 12 \)[/tex]
This equation does not hold true.
B. [tex]\( 15 + x = 10 \)[/tex]
1. Substitute [tex]\( x = 15 \)[/tex] into the equation:
[tex]\( 15 + 15 \)[/tex]
2. Calculate the left side:
[tex]\( 30 \)[/tex]
3. Compare with the right side (10):
[tex]\( 30 \neq 10 \)[/tex]
This equation does not hold true.
C. [tex]\( 13 + x = 38 \)[/tex]
1. Substitute [tex]\( x = 15 \)[/tex] into the equation:
[tex]\( 13 + 15 \)[/tex]
2. Calculate the left side:
[tex]\( 28 \)[/tex]
3. Compare with the right side (38):
[tex]\( 28 \neq 38 \)[/tex]
This equation does not hold true.
D. [tex]\( x + 24 = 39 \)[/tex]
1. Substitute [tex]\( x = 15 \)[/tex] into the equation:
[tex]\( 15 + 24 \)[/tex]
2. Calculate the left side:
[tex]\( 39 \)[/tex]
3. Compare with the right side (39):
[tex]\( 39 = 39 \)[/tex]
This equation holds true.
Thus, the equation that has a solution of [tex]\( x = 15 \)[/tex] is D. [tex]\( x + 24 = 39 \)[/tex].
Let's go through the options one by one:
A. [tex]\( x + 7 = 12 \)[/tex]
1. Substitute [tex]\( x = 15 \)[/tex] into the equation:
[tex]\( 15 + 7 \)[/tex]
2. Calculate the left side:
[tex]\( 22 \)[/tex]
3. Compare with the right side (12):
[tex]\( 22 \neq 12 \)[/tex]
This equation does not hold true.
B. [tex]\( 15 + x = 10 \)[/tex]
1. Substitute [tex]\( x = 15 \)[/tex] into the equation:
[tex]\( 15 + 15 \)[/tex]
2. Calculate the left side:
[tex]\( 30 \)[/tex]
3. Compare with the right side (10):
[tex]\( 30 \neq 10 \)[/tex]
This equation does not hold true.
C. [tex]\( 13 + x = 38 \)[/tex]
1. Substitute [tex]\( x = 15 \)[/tex] into the equation:
[tex]\( 13 + 15 \)[/tex]
2. Calculate the left side:
[tex]\( 28 \)[/tex]
3. Compare with the right side (38):
[tex]\( 28 \neq 38 \)[/tex]
This equation does not hold true.
D. [tex]\( x + 24 = 39 \)[/tex]
1. Substitute [tex]\( x = 15 \)[/tex] into the equation:
[tex]\( 15 + 24 \)[/tex]
2. Calculate the left side:
[tex]\( 39 \)[/tex]
3. Compare with the right side (39):
[tex]\( 39 = 39 \)[/tex]
This equation holds true.
Thus, the equation that has a solution of [tex]\( x = 15 \)[/tex] is D. [tex]\( x + 24 = 39 \)[/tex].