College

6) Find [tex]g \circ f(x) = g(f(x))[/tex].

Given:
[tex]f(x) = 3x^2[/tex]
[tex]g(x) = 2x^3[/tex]

Options:
A. [tex]54x^6[/tex]
B. [tex]6x^6[/tex]
C. [tex]5x^6[/tex]
D. [tex]6x^5[/tex]

Answer :

To find [tex]\( g \circ f(x) = g(f(x)) \)[/tex], you'll need to substitute the output of the function [tex]\( f(x) \)[/tex] into the function [tex]\( g(x) \)[/tex]. Here are the steps:

1. Identify the given functions:
- [tex]\( f(x) = 3x^2 \)[/tex]
- [tex]\( g(x) = 2x^3 \)[/tex]

2. Substitute [tex]\( f(x) \)[/tex] into [tex]\( g(x) \)[/tex]:
- Since [tex]\( f(x) = 3x^2 \)[/tex], you'll substitute [tex]\( 3x^2 \)[/tex] into [tex]\( g(x) \)[/tex].
- So, [tex]\( g(f(x)) = g(3x^2) \)[/tex].

3. Evaluate [tex]\( g(3x^2) \)[/tex]:
- Recall that [tex]\( g(x) = 2x^3 \)[/tex].
- Replace [tex]\( x \)[/tex] in [tex]\( g(x) \)[/tex] with [tex]\( 3x^2 \)[/tex]:
[tex]\[ g(3x^2) = 2(3x^2)^3 \][/tex]

4. Simplify the expression:
- First calculate [tex]\( (3x^2)^3 \)[/tex]:
[tex]\((3x^2)^3 = 3^3 \cdot (x^2)^3 = 27x^6\)[/tex]
- Then multiply by 2:
[tex]\( 2 \cdot 27x^6 = 54x^6 \)[/tex]

The result is:

[tex]\[ g(f(x)) = 54x^6 \][/tex]

Therefore, [tex]\( g \circ f(x) = 54x^6 \)[/tex].