High School

5. Explain how to make these calculations mentally.

a) [tex]$99 + 54$[/tex]
b) [tex]$244 - 99$[/tex]
c) [tex][tex]$99 \cdot 6$[/tex][/tex]
d) [tex]$99 \cdot 15$[/tex]

Answer :

Let's solve each part using mental math shortcuts.

–––––––
(a) Calculate [tex]\( 99 + 54 \)[/tex]

Notice that [tex]\(99\)[/tex] is just [tex]\(1\)[/tex] less than [tex]\(100\)[/tex]. We can add using [tex]\(100\)[/tex] and then adjust:

1. Compute:
[tex]$$100 + 54 = 154.$$[/tex]
2. Since we added [tex]\(1\)[/tex] extra (because [tex]\(100\)[/tex] is [tex]\(1\)[/tex] more than [tex]\(99\)[/tex]), subtract [tex]\(1\)[/tex]:
[tex]$$154 - 1 = 153.$$[/tex]

So,
[tex]$$ 99 + 54 = 153. $$[/tex]

–––––––
(b) Calculate [tex]\( 244 - 99 \)[/tex]

Recognize that subtracting [tex]\(99\)[/tex] is almost subtracting [tex]\(100\)[/tex]. We perform the subtraction with [tex]\(100\)[/tex] first, then add back [tex]\(1\)[/tex]:

1. Compute:
[tex]$$244 - 100 = 144.$$[/tex]
2. Since [tex]\(99\)[/tex] is [tex]\(1\)[/tex] less than [tex]\(100\)[/tex], add [tex]\(1\)[/tex] back:
[tex]$$144 + 1 = 145.$$[/tex]

So,
[tex]$$ 244 - 99 = 145. $$[/tex]

–––––––
(c) Calculate [tex]\( 99 \times 6 \)[/tex]

Notice that [tex]\(99\)[/tex] is [tex]\(1\)[/tex] less than [tex]\(100\)[/tex]. Multiply by [tex]\(6\)[/tex] using [tex]\(100 \times 6\)[/tex] then subtract [tex]\(6\)[/tex]:

1. Compute:
[tex]$$100 \times 6 = 600.$$[/tex]
2. Subtract:
[tex]$$600 - 6 = 594.$$[/tex]

Thus,
[tex]$$ 99 \times 6 = 594. $$[/tex]

–––––––
(d) Calculate [tex]\( 99 \times 15 \)[/tex]

Similarly, rewrite [tex]\(99\)[/tex] as [tex]\(100-1\)[/tex]:

1. Multiply:
[tex]$$100 \times 15 = 1500.$$[/tex]
2. Then subtract [tex]\(15\)[/tex]:
[tex]$$1500 - 15 = 1485.$$[/tex]

So,
[tex]$$ 99 \times 15 = 1485. $$[/tex]

–––––––
Final Answers:

[tex]\[
\begin{array}{ll}
\text{(a)} & 153 \\
\text{(b)} & 145 \\
\text{(c)} & 594 \\
\text{(d)} & 1485 \\
\end{array}
\][/tex]

These are the results of the mental calculations.