Answer :
Sure, let's solve each problem step by step.
33. Compute [tex]\(-8 - (-10) - 5\)[/tex]:
1. Start by simplifying the expression [tex]\(-8 - (-10)\)[/tex]. The subtraction of a negative number is the same as addition. So, [tex]\(-8 - (-10)\)[/tex] becomes [tex]\(-8 + 10\)[/tex].
2. Calculate [tex]\(-8 + 10\)[/tex]. This equals [tex]\(2\)[/tex].
3. Now subtract 5 from the result: [tex]\(2 - 5\)[/tex].
4. [tex]\(2 - 5 = -3\)[/tex].
So, the answer is A. -3.
34. Multiply [tex]\(-7(-9)\)[/tex]:
1. When you multiply two negative numbers, the result is positive.
2. Multiply [tex]\(7\)[/tex] by [tex]\(9\)[/tex]: [tex]\(7 \times 9 = 63\)[/tex].
So, the answer is C. 63.
35. Multiply [tex]\(2(-4)(-1)\)[/tex]:
1. Start by multiplying [tex]\(2\)[/tex] by [tex]\(-4\)[/tex]: [tex]\(2 \times (-4) = -8\)[/tex].
2. Now, multiply [tex]\(-8\)[/tex] by [tex]\(-1\)[/tex]. Since multiplying two negative numbers gives a positive result, [tex]\(-8 \times (-1) = 8\)[/tex].
So, the answer is B. 8.
36. Divide [tex]\(-32 \div 8\)[/tex]:
1. Divide [tex]\(-32\)[/tex] by [tex]\(8\)[/tex].
2. [tex]\(-32 \div 8 = -4\)[/tex].
So, the answer is C. -4.
37. Divide [tex]\(42 \div (-6)\)[/tex]:
1. Divide [tex]\(42\)[/tex] by [tex]\(-6\)[/tex].
2. [tex]\(42 \div (-6) = -7\)[/tex].
So, the answer is A. -7.
38. Divide [tex]\(-72 \div (-9)\)[/tex]:
1. Divide [tex]\(-72\)[/tex] by [tex]\(-9\)[/tex].
2. When dividing two negative numbers, the result is positive.
3. [tex]\(-72 \div (-9) = 8\)[/tex].
So, the answer is A. 8.
33. Compute [tex]\(-8 - (-10) - 5\)[/tex]:
1. Start by simplifying the expression [tex]\(-8 - (-10)\)[/tex]. The subtraction of a negative number is the same as addition. So, [tex]\(-8 - (-10)\)[/tex] becomes [tex]\(-8 + 10\)[/tex].
2. Calculate [tex]\(-8 + 10\)[/tex]. This equals [tex]\(2\)[/tex].
3. Now subtract 5 from the result: [tex]\(2 - 5\)[/tex].
4. [tex]\(2 - 5 = -3\)[/tex].
So, the answer is A. -3.
34. Multiply [tex]\(-7(-9)\)[/tex]:
1. When you multiply two negative numbers, the result is positive.
2. Multiply [tex]\(7\)[/tex] by [tex]\(9\)[/tex]: [tex]\(7 \times 9 = 63\)[/tex].
So, the answer is C. 63.
35. Multiply [tex]\(2(-4)(-1)\)[/tex]:
1. Start by multiplying [tex]\(2\)[/tex] by [tex]\(-4\)[/tex]: [tex]\(2 \times (-4) = -8\)[/tex].
2. Now, multiply [tex]\(-8\)[/tex] by [tex]\(-1\)[/tex]. Since multiplying two negative numbers gives a positive result, [tex]\(-8 \times (-1) = 8\)[/tex].
So, the answer is B. 8.
36. Divide [tex]\(-32 \div 8\)[/tex]:
1. Divide [tex]\(-32\)[/tex] by [tex]\(8\)[/tex].
2. [tex]\(-32 \div 8 = -4\)[/tex].
So, the answer is C. -4.
37. Divide [tex]\(42 \div (-6)\)[/tex]:
1. Divide [tex]\(42\)[/tex] by [tex]\(-6\)[/tex].
2. [tex]\(42 \div (-6) = -7\)[/tex].
So, the answer is A. -7.
38. Divide [tex]\(-72 \div (-9)\)[/tex]:
1. Divide [tex]\(-72\)[/tex] by [tex]\(-9\)[/tex].
2. When dividing two negative numbers, the result is positive.
3. [tex]\(-72 \div (-9) = 8\)[/tex].
So, the answer is A. 8.