Answer :
To solve the linear system using Cramer's Rule, follow these steps:
We have the system of equations:
1. [tex]\( x_1 + 2x_2 = 5 \)[/tex]
2. [tex]\(-x_1 + x_2 = 1 \)[/tex]
Step 1: Formulate the coefficient matrix and the determinant.
The coefficient matrix [tex]\( A \)[/tex] is:
[tex]\[
A = \begin{bmatrix}
1 & 2 \\
-1 & 1
\end{bmatrix}
\][/tex]
The determinant of matrix [tex]\( A \)[/tex] (denoted as [tex]\( \det(A) \)[/tex]) is calculated as follows:
[tex]\[
\det(A) = (1)(1) - (-1)(2) = 1 + 2 = 3
\][/tex]
Since the determinant is non-zero ([tex]\( \det(A) = 3 \)[/tex]), Cramer's Rule can be applied, indicating the system has a unique solution.
Step 2: Calculate the determinants for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex].
To find [tex]\( x_1 \)[/tex], replace the first column of the coefficient matrix with the constants from the right side of the equations:
[tex]\[
A_{x_1} = \begin{bmatrix}
5 & 2 \\
1 & 1
\end{bmatrix}
\][/tex]
The determinant [tex]\( \det(A_{x_1}) \)[/tex] is:
[tex]\[
\det(A_{x_1}) = (5)(1) - (1)(2) = 5 - 2 = 3
\][/tex]
To find [tex]\( x_2 \)[/tex], replace the second column of the coefficient matrix with the constants:
[tex]\[
A_{x_2} = \begin{bmatrix}
1 & 5 \\
-1 & 1
\end{bmatrix}
\][/tex]
The determinant [tex]\( \det(A_{x_2}) \)[/tex] is:
[tex]\[
\det(A_{x_2}) = (1)(1) - (-1)(5) = 1 + 5 = 6
\][/tex]
Step 3: Solve for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex] using Cramer's Rule.
According to Cramer's Rule:
[tex]\[
x_1 = \frac{\det(A_{x_1})}{\det(A)} = \frac{3}{3} = 1.0
\][/tex]
[tex]\[
x_2 = \frac{\det(A_{x_2})}{\det(A)} = \frac{6}{3} = 2.0
\][/tex]
Thus, the solution to the system of equations is:
[tex]\( x_1 = 1.0 \)[/tex] and [tex]\( x_2 = 2.0 \)[/tex].
We have the system of equations:
1. [tex]\( x_1 + 2x_2 = 5 \)[/tex]
2. [tex]\(-x_1 + x_2 = 1 \)[/tex]
Step 1: Formulate the coefficient matrix and the determinant.
The coefficient matrix [tex]\( A \)[/tex] is:
[tex]\[
A = \begin{bmatrix}
1 & 2 \\
-1 & 1
\end{bmatrix}
\][/tex]
The determinant of matrix [tex]\( A \)[/tex] (denoted as [tex]\( \det(A) \)[/tex]) is calculated as follows:
[tex]\[
\det(A) = (1)(1) - (-1)(2) = 1 + 2 = 3
\][/tex]
Since the determinant is non-zero ([tex]\( \det(A) = 3 \)[/tex]), Cramer's Rule can be applied, indicating the system has a unique solution.
Step 2: Calculate the determinants for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex].
To find [tex]\( x_1 \)[/tex], replace the first column of the coefficient matrix with the constants from the right side of the equations:
[tex]\[
A_{x_1} = \begin{bmatrix}
5 & 2 \\
1 & 1
\end{bmatrix}
\][/tex]
The determinant [tex]\( \det(A_{x_1}) \)[/tex] is:
[tex]\[
\det(A_{x_1}) = (5)(1) - (1)(2) = 5 - 2 = 3
\][/tex]
To find [tex]\( x_2 \)[/tex], replace the second column of the coefficient matrix with the constants:
[tex]\[
A_{x_2} = \begin{bmatrix}
1 & 5 \\
-1 & 1
\end{bmatrix}
\][/tex]
The determinant [tex]\( \det(A_{x_2}) \)[/tex] is:
[tex]\[
\det(A_{x_2}) = (1)(1) - (-1)(5) = 1 + 5 = 6
\][/tex]
Step 3: Solve for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex] using Cramer's Rule.
According to Cramer's Rule:
[tex]\[
x_1 = \frac{\det(A_{x_1})}{\det(A)} = \frac{3}{3} = 1.0
\][/tex]
[tex]\[
x_2 = \frac{\det(A_{x_2})}{\det(A)} = \frac{6}{3} = 2.0
\][/tex]
Thus, the solution to the system of equations is:
[tex]\( x_1 = 1.0 \)[/tex] and [tex]\( x_2 = 2.0 \)[/tex].