College

2. Which numbers are equivalent to [tex]$0.\overline{6}$[/tex]? Circle all that apply.

A. [tex]$\frac{6}{3}$[/tex]

B. [tex]$60\%$[/tex]

C. [tex]$0.666\ldots$[/tex]

D. [tex]$\frac{6}{10}$[/tex]

E. [tex]$\frac{2}{3}$[/tex]

F. [tex]$66.\overline{6}\%$[/tex]

Answer :

To determine which numbers are equivalent to [tex]\(0.\overline{6}\)[/tex], we should recognize that this repeating decimal can be expressed in fraction form as [tex]\(\frac{2}{3}\)[/tex]. Let's evaluate each option:

A. [tex]\(\frac{6}{3}\)[/tex]
Simplifying [tex]\(\frac{6}{3}\)[/tex] gives [tex]\(2\)[/tex], which is not equivalent to [tex]\(\frac{2}{3}\)[/tex].

B. [tex]\(60\%\)[/tex]
Converting [tex]\(60\%\)[/tex] to a decimal gives [tex]\(0.60\)[/tex], which is not equivalent to [tex]\(0.\overline{6}\)[/tex].

C. [tex]\(0.666\ldots\)[/tex]
This is a shortened representation of the decimal that keeps repeating, just like [tex]\(0.\overline{6}\)[/tex], but without specifying it repeats. This is not precisely equal to [tex]\(0.\overline{6}\)[/tex].

D. [tex]\(\frac{6}{10}\)[/tex]
Simplifying [tex]\(\frac{6}{10}\)[/tex] gives [tex]\(0.6\)[/tex], which is not equivalent to [tex]\(0.\overline{6}\)[/tex].

E. [tex]\(\frac{2}{3}\)[/tex]
This is exactly equal to [tex]\(0.\overline{6}\)[/tex].

F. [tex]\(66.\overline{6}\%\)[/tex]
Converting [tex]\(66.\overline{6}\%\)[/tex] to a decimal, first recognize it as repeating 66.666...%, which as a decimal is [tex]\(0.6666\ldots\)[/tex], equivalently [tex]\(0.\overline{6}\)[/tex].

Therefore, the numbers equivalent to [tex]\(0.\overline{6}\)[/tex] are Option E ([tex]\(\frac{2}{3}\)[/tex]) and Option F ([tex]\(66.\overline{6}\%\)[/tex]).