Answer :
(i) The cost per kg of rice [tex]x[/tex] is Rs. 4.28, and the cost per kg of flour [tex]y[/tex] is Rs. 27.65.
(ii) The cost per kg of apples [tex]a[/tex] is Rs. 140, and the cost per kg of mangoes [tex]m[/tex] is Rs. 110.
(i) We have two sets of equations based on the given information:
- [tex]14.5x + 3y = 145[/tex]
- [tex]3x + 5y = 151[/tex]
where, [tex]x[/tex] is the cost per kg of rice, and [tex]y[/tex] is the cost per kg of flour.
Solve Equation (1) for one variable:
[tex]14.5x + 3y = 145[/tex]
[tex]3y = 145 - 14.5x[/tex]
[tex]y = \frac{145 - 14.5x}{3}[/tex] (Equation 3)
Substitute Equation (3) into Equation (2):
[tex]3x + 5\left(\frac{145 - 14.5x}{3}\right) = 151[/tex]
Multiply through by 3 to clear the fraction:
[tex]9x + 5(145 - 14.5x) = 453[/tex]
[tex]9x + 725 - 72.5x = 453[/tex]
Combine like terms:
[tex]-63.5x + 725 = 453[/tex]
Subtract 725 from both sides:
[tex]-63.5x = -272[/tex]
Divide both sides by -63.5:
[tex]x = \frac{272}{63.5}[/tex]
[tex]x = 4.28[/tex]
Now, substitute [tex]x[/tex] back into Equation (3):
[tex]y = \frac{145 - 14.5(4.28)}{3}[/tex]
[tex]y = \frac{145 - 62.06}{3}[/tex]
[tex]y = \frac{82.94}{3}[/tex]
[tex]y = 27.65[/tex]
(ii) We have two sets of equations based on the given information:
- [tex]5a + 15m = 2350[/tex]
- [tex]3a + 7m = 1190[/tex]
where, [tex]a[/tex] is the cost per kg of apples, and [tex]m[/tex] is the cost per kg of mangoes.
Solve Equation (1) for one variable:
[tex]5a + 15m = 2350[/tex]
[tex]a + 3m = \frac{2350}{5}[/tex]
[tex]a + 3m = 470[/tex] (Equation 3)
Solve Equation (2) for one variable:
[tex]3a + 7m = 1190[/tex]
Solve using substitution method:
Subtract Equation (3) from (2) to eliminate one variable:
[tex]3a + 7m - (a + 3m) = 1190 - 470[/tex]
[tex]3a + 7m - a - 3m = 720[/tex]
[tex]2a + 4m = 720[/tex]
Divide by 2:
[tex]a + 2m = 360[/tex]
Now we have:
[tex]a + 3m = 470[/tex] (Equation 3)
[tex]a + 2m = 360[/tex] (Equation 4)
Subtract Equation (4) from (3):
[tex]a + 3m - (a + 2m) = 470 - 360[/tex]
[tex]m = 110[/tex]
Substitute [tex]m[/tex] back into Equation (4):
[tex]a + 2(110) = 360[/tex]
[tex]a + 220 = 360[/tex]
[tex]a = 140[/tex]