College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ 1. Which of these polynomials could have [tex](x-2)[/tex] as a factor?

a. [tex]A(x) = 6x^2 - 7x - 5[/tex]

b. [tex]B(x) = 3x^2 + 15x - 42[/tex]

c. [tex]C(x) = 2x^3 + 13x^2 + 16x + 5[/tex]

d. [tex]D(x) = 3x^3 - 2x^2 - 15x + 14[/tex]

e. [tex]E(x) = 8x^4 - 41x^3 - 18x^2 + 101x + 70[/tex]

f. [tex]F(x) = x^4 + 5x^3 - 27x^2 - 101x - 70[/tex]

Answer :

To determine which of the given polynomials have [tex]\((x-2)\)[/tex] as a factor, we can apply the Remainder Theorem. The Remainder Theorem states that for a polynomial [tex]\(P(x)\)[/tex], the remainder of the division of [tex]\(P(x)\)[/tex] by [tex]\((x-a)\)[/tex] is [tex]\(P(a)\)[/tex]. This means that if [tex]\(P(a) = 0\)[/tex], then [tex]\((x-a)\)[/tex] is a factor of [tex]\(P(x)\)[/tex].

In this case, we want to check if [tex]\(x-2\)[/tex] is a factor, which requires us to evaluate the polynomial at [tex]\(x = 2\)[/tex]. If the result is zero, then [tex]\((x-2)\)[/tex] is a factor. Let's evaluate each polynomial:

1. For [tex]\(A(x) = 6x^2 - 7x - 5\)[/tex]:
[tex]\[
A(2) = 6(2)^2 - 7(2) - 5 = 24 - 14 - 5 = 5
\][/tex]
Since [tex]\(A(2) \neq 0\)[/tex], [tex]\((x-2)\)[/tex] is not a factor of [tex]\(A(x)\)[/tex].

2. For [tex]\(B(x) = 3x^2 + 15x - 42\)[/tex]:
[tex]\[
B(2) = 3(2)^2 + 15(2) - 42 = 12 + 30 - 42 = 0
\][/tex]
Since [tex]\(B(2) = 0\)[/tex], [tex]\((x-2)\)[/tex] is a factor of [tex]\(B(x)\)[/tex].

3. For [tex]\(C(x) = 2x^3 + 13x^2 + 16x + 5\)[/tex]:
[tex]\[
C(2) = 2(2)^3 + 13(2)^2 + 16(2) + 5 = 16 + 52 + 32 + 5 = 105
\][/tex]
Since [tex]\(C(2) \neq 0\)[/tex], [tex]\((x-2)\)[/tex] is not a factor of [tex]\(C(x)\)[/tex].

4. For [tex]\(D(x) = 3x^3 - 2x^2 - 15x + 14\)[/tex]:
[tex]\[
D(2) = 3(2)^3 - 2(2)^2 - 15(2) + 14 = 24 - 8 - 30 + 14 = 0
\][/tex]
Since [tex]\(D(2) = 0\)[/tex], [tex]\((x-2)\)[/tex] is a factor of [tex]\(D(x)\)[/tex].

5. For [tex]\(E(x) = 8x^4 - 41x^3 - 18x^2 + 101x + 70\)[/tex]:
[tex]\[
E(2) = 8(2)^4 - 41(2)^3 - 18(2)^2 + 101(2) + 70 = 128 - 328 - 72 + 202 + 70 = 0
\][/tex]
Since [tex]\(E(2) = 0\)[/tex], [tex]\((x-2)\)[/tex] is a factor of [tex]\(E(x)\)[/tex].

6. For [tex]\(F(x) = x^4 + 5x^3 - 27x^2 - 101x - 70\)[/tex]:
[tex]\[
F(2) = (2)^4 + 5(2)^3 - 27(2)^2 - 101(2) - 70 = 16 + 40 - 108 - 202 - 70 = -324
\][/tex]
Since [tex]\(F(2) \neq 0\)[/tex], [tex]\((x-2)\)[/tex] is not a factor of [tex]\(F(x)\)[/tex].

Thus, the polynomials that have [tex]\((x-2)\)[/tex] as a factor are [tex]\(B(x)\)[/tex], [tex]\(D(x)\)[/tex], and [tex]\(E(x)\)[/tex].